enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Decimal data type - Wikipedia

    en.wikipedia.org/wiki/Decimal_data_type

    It has an approximate range of ±1.0 × 10 −28 to ±7.9228 × 10 28. [1] Starting with Python 2.4, Python's standard library includes a Decimal class in the module decimal. [2] Ruby's standard library includes a BigDecimal class in the module bigdecimal. Java's standard library includes a java.math.BigDecimal class.

  3. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    But if exact values for large factorials are desired, then special software is required, as in the pseudocode that follows, which implements the classic algorithm to calculate 1, 1×2, 1×2×3, 1×2×3×4, etc. the successive factorial numbers.

  4. Decimal floating point - Wikipedia

    en.wikipedia.org/wiki/Decimal_floating_point

    e=5; s=1.234571 − e=5; s=1.234567 ----- e=5; s=0.000004 e=−1; s=4.000000 (after rounding and normalization) The floating-point difference is computed exactly because the numbers are close—the Sterbenz lemma guarantees this, even in case of underflow when gradual underflow is supported.

  5. Numeric precision in Microsoft Excel - Wikipedia

    en.wikipedia.org/wiki/Numeric_precision_in...

    Excel's storage of numbers in binary format also affects its accuracy. [3] To illustrate, the lower figure tabulates the simple addition 1 + x − 1 for several values of x. All the values of x begin at the 15 th decimal, so Excel must take them into account. Before calculating the sum 1 + x, Excel first approximates x as a binary number

  6. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    Single precision is termed REAL in Fortran; [1] SINGLE-FLOAT in Common Lisp; [2] float in C, C++, C# and Java; [3] Float in Haskell [4] and Swift; [5] and Single in Object Pascal , Visual Basic, and MATLAB. However, float in Python, Ruby, PHP, and OCaml and single in versions of Octave before 3.2 refer to double-precision numbers.

  7. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    e=5; s=1.234571 − e=5; s=1.234567 ----- e=5; s=0.000004 e=−1; s=4.000000 (after rounding and normalization) The floating-point difference is computed exactly because the numbers are close—the Sterbenz lemma guarantees this, even in case of underflow when gradual underflow is supported.

  8. Minifloat - Wikipedia

    en.wikipedia.org/wiki/Minifloat

    A 2-bit float with 1-bit exponent and 1-bit mantissa would only have 0, 1, Inf, NaN values. If the mantissa is allowed to be 0-bit, a 1-bit float format would have a 1-bit exponent, and the only two values would be 0 and Inf. The exponent must be at least 1 bit or else it no longer makes sense as a float (it would just be a signed number).

  9. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    An IEEE 754 format is a "set of representations of numerical values and symbols". A format may also include how the set is encoded. [9] A floating-point format is specified by a base (also called radix) b, which is either 2 (binary) or 10 (decimal) in IEEE 754; a precision p;