enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. De Morgan's laws - Wikipedia

    en.wikipedia.org/wiki/De_Morgan's_laws

    De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.

  3. Inclusion–exclusion principle - Wikipedia

    en.wikipedia.org/wiki/Inclusion–exclusion...

    The principle of inclusion–exclusion, combined with De Morgan's law, can be used to count the cardinality of the intersection of sets as well. Let A k ¯ {\displaystyle {\overline {A_{k}}}} represent the complement of A k with respect to some universal set A such that A k ⊆ A {\displaystyle A_{k}\subseteq A} for each k .

  4. Augustus De Morgan - Wikipedia

    en.wikipedia.org/wiki/Augustus_De_Morgan

    Augustus De Morgan (27 June 1806 – 18 March 1871) was a British mathematician and logician.He is best known for De Morgan's laws, relating logical conjunction, disjunction, and negation, and for coining the term "mathematical induction", the underlying principles of which he formalized. [1]

  5. Probability - Wikipedia

    en.wikipedia.org/wiki/Probability

    Augustus De Morgan and George Boole improved the exposition of the theory. ... In both cases, the laws of probability are the same, except for technical details.

  6. De Morgan algebra - Wikipedia

    en.wikipedia.org/wiki/De_Morgan_algebra

    (i.e. an involution that additionally satisfies De Morgan's laws) In a De Morgan algebra, the laws ¬x ∨ x = 1 (law of the excluded middle), and; ¬x ∧ x = 0 (law of noncontradiction) do not always hold. In the presence of the De Morgan laws, either law implies the other, and an algebra which satisfies them becomes a Boolean algebra.

  7. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    To investigate the left distributivity of set subtraction over unions or intersections, consider how the sets involved in (both of) De Morgan's laws are all related: () = = () always holds (the equalities on the left and right are De Morgan's laws) but equality is not guaranteed in general (that is, the containment might be strict).

  8. Subjective logic - Wikipedia

    en.wikipedia.org/wiki/Subjective_logic

    The projected probability of a binomial opinion is defined as = + . ... De Morgan's laws are also satisfied as e.g. expressed by ...

  9. Boolean domain - Wikipedia

    en.wikipedia.org/wiki/Boolean_domain

    Algebraically, negation (NOT) is replaced with , conjunction (AND) is replaced with multiplication (), and disjunction (OR) is defined via De Morgan's law to be () = +. Interpreting these values as logical truth values yields a multi-valued logic , which forms the basis for fuzzy logic and probabilistic logic .