Search results
Results from the WOW.Com Content Network
Relative permeability must be between zero and one. In applications, relative permeability is often represented as a function of water saturation; however, owing to capillary hysteresis one often resorts to a function or curve measured under drainage and another measured under imbibition.
In fluid dynamics, the Buckley–Leverett equation is a conservation equation used to model two-phase flow in porous media. [1] The Buckley–Leverett equation or the Buckley–Leverett displacement describes an immiscible displacement process, such as the displacement of oil by water, in a one-dimensional or quasi-one-dimensional reservoir.
All this requires different relative permeability curves for the x and z directions. Geological heterogeneities in the reservoirs like laminas or crossbedded permeability structures in the rock, also cause directional relative permeabilities. This tells us that relative permeability should, in the most general case, be represented by a tensor.
Craig [1] proposed three rules of thumb for interpretation of wettability from relative permeability curves. These rules are based on the value of interstitial water saturation, the water saturation at the crossover point of relative permeability curves (i.e., where relative permeabilities are equal to each other), and the normalized water permeability at residual oil saturation (i.e ...
The refractive index of electromagnetic radiation equals =, where ε r is the material's relative permittivity, and μ r is its relative permeability. [ 47 ] : 229 The refractive index is used for optics in Fresnel equations and Snell's law ; while the relative permittivity and permeability are used in Maxwell's equations and electronics.
A practical unit for permeability is the darcy (d), or more commonly the millidarcy (md) (1 d ≈ 10 −12 m 2). The name honors the French Engineer Henry Darcy who first described the flow of water through sand filters for potable water supply. Permeability values for most materials commonly range typically from a fraction to several thousand ...
Interactive maps, databases and real-time graphics from The Huffington Post
In petroleum engineering, the Leverett J-function is a dimensionless function of water saturation describing the capillary pressure, [1] = / where is the water saturation measured as a fraction, is the capillary pressure (in pascal), is the permeability (measured in m²), is the porosity (0-1), is the surface tension (in N/m) and is the contact angle.