enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kurtosis - Wikipedia

    en.wikipedia.org/wiki/Kurtosis

    Larger kurtosis indicates a more serious outlier problem, and may lead the researcher to choose alternative statistical methods. D'Agostino's K-squared test is a goodness-of-fit normality test based on a combination of the sample skewness and sample kurtosis, as is the Jarque–Bera test for normality.

  3. Kurtosis risk - Wikipedia

    en.wikipedia.org/wiki/Kurtosis_risk

    Kurtosis risk applies to any kurtosis-related quantitative model that assumes the normal distribution for certain of its independent variables when the latter may in fact have kurtosis much greater than does the normal distribution. Kurtosis risk is commonly referred to as "fat tail" risk. The "fat tail" metaphor explicitly describes the ...

  4. Jarque–Bera test - Wikipedia

    en.wikipedia.org/wiki/Jarque–Bera_test

    In statistics, the Jarque–Bera test is a goodness-of-fit test of whether sample data have the skewness and kurtosis matching a normal distribution. The test is named after Carlos Jarque and Anil K. Bera. The test statistic is always nonnegative. If it is far from zero, it signals the data do not have a normal distribution.

  5. Higher-order statistics - Wikipedia

    en.wikipedia.org/wiki/Higher-order_statistics

    HOS are particularly used in the estimation of shape parameters, such as skewness and kurtosis, as when measuring the deviation of a distribution from the normal distribution. In statistical theory , one long-established approach to higher-order statistics, for univariate and multivariate distributions is through the use of cumulants and joint ...

  6. D'Agostino's K-squared test - Wikipedia

    en.wikipedia.org/wiki/D'Agostino's_K-squared_test

    In the following, { x i } denotes a sample of n observations, g 1 and g 2 are the sample skewness and kurtosis, m j ’s are the j-th sample central moments, and ¯ is the sample mean. Frequently in the literature related to normality testing, the skewness and kurtosis are denoted as √ β 1 and β 2 respectively.

  7. L-moment - Wikipedia

    en.wikipedia.org/wiki/L-moment

    For instance, the Laplace distribution has a kurtosis of 6 and weak exponential tails, but a larger 4th L-moment ratio than e.g. the student-t distribution with d.f.=3, which has an infinite kurtosis and much heavier tails. As an example consider a dataset with a few data points and one outlying data value.

  8. NYT ‘Connections’ Hints and Answers Today, Friday ... - AOL

    www.aol.com/nyt-connections-hints-answers-today...

    Get ready for all of today's NYT 'Connections’ hints and answers for #551 on Friday, December 13, 2024. Today's NYT Connections puzzle for Friday, December 13, 2024The New York Times.

  9. Fat-tailed distribution - Wikipedia

    en.wikipedia.org/wiki/Fat-tailed_distribution

    A fat-tailed distribution is a probability distribution that exhibits a large skewness or kurtosis, relative to that of either a normal distribution or an exponential distribution. [when defined as?] In common usage, the terms fat-tailed and heavy-tailed are sometimes synonymous; fat-tailed is sometimes also defined as a subset of heavy-tailed ...