enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Similarity (geometry) - Wikipedia

    en.wikipedia.org/wiki/Similarity_(geometry)

    Similar figures. In Euclidean geometry, two objects are similar if they have the same shape, or if one has the same shape as the mirror image of the other.More precisely, one can be obtained from the other by uniformly scaling (enlarging or reducing), possibly with additional translation, rotation and reflection.

  3. Homothety - Wikipedia

    en.wikipedia.org/wiki/Homothety

    In Euclidean geometry homotheties are the similarities that fix a point and either preserve (if >) or reverse (if <) the direction of all vectors. Together with the translations, all homotheties of an affine (or Euclidean) space form a group, the group of dilations or homothety-translations.

  4. List of Euclidean uniform tilings - Wikipedia

    en.wikipedia.org/wiki/List_of_euclidean_uniform...

    An orthogonal mirror construction [∞,2,∞] also exists, seen as two sets of parallel mirrors making a rectangular fundamental domain. If the domain is square, this symmetry can be doubled by a diagonal mirror into the [4,4] family. Families: (4,4,2), ~, [4,4] – Symmetry of the regular square tiling

  5. Spiral similarity - Wikipedia

    en.wikipedia.org/wiki/Spiral_Similarity

    A spiral similarity taking triangle ABC to triangle A'B'C'. Spiral similarity is a plane transformation in mathematics composed of a rotation and a dilation. [1] It is used widely in Euclidean geometry to facilitate the proofs of many theorems and other results in geometry, especially in mathematical competitions and olympiads.

  6. Uniform tiling - Wikipedia

    en.wikipedia.org/wiki/Uniform_tiling

    There are symmetry groups on the Euclidean plane constructed from fundamental triangles: (4 4 2), (6 3 2), and (3 3 3). Each is represented by a set of lines of reflection that divide the plane into fundamental triangles. These symmetry groups create 3 regular tilings, and 7 semiregular ones. A number of the semiregular tilings are repeated ...

  7. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements.Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.

  8. List of planar symmetry groups - Wikipedia

    en.wikipedia.org/wiki/List_of_planar_symmetry_groups

    The Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, ISBN 978-1-56881-220-5 (Orbifold notation for polyhedra, Euclidean and hyperbolic tilings) On Quaternions and Octonions , 2003, John Horton Conway and Derek A. Smith ISBN 978-1-56881-134-5

  9. Euclidean group - Wikipedia

    en.wikipedia.org/wiki/Euclidean_group

    A Euclidean isometry can be direct or indirect, depending on whether it preserves the handedness of figures. The direct Euclidean isometries form a subgroup, the special Euclidean group, often denoted SE(n) and E + (n), whose elements are called rigid motions or Euclidean motions. They comprise arbitrary combinations of translations and ...