enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Square wave - Wikipedia

    en.wikipedia.org/wiki/Square_wave

    The square wave in mathematics has many definitions, which are equivalent except at the discontinuities: It can be defined as simply the sign function of a sinusoid: = ⁡ (⁡) = ⁡ (⁡) = ⁡ (⁡) = ⁡ (⁡), which will be 1 when the sinusoid is positive, −1 when the sinusoid is negative, and 0 at the discontinuities.

  3. Schrödinger equation - Wikipedia

    en.wikipedia.org/wiki/Schrödinger_equation

    Consequently, the wave function also became a four-component function, governed by the Dirac equation that, in free space, read (+ (= ⁡)) =. This has again the form of the Schrödinger equation, with the time derivative of the wave function being given by a Hamiltonian operator acting upon the wave function.

  4. Rectangular potential barrier - Wikipedia

    en.wikipedia.org/wiki/Rectangular_potential_barrier

    In classical wave-physics, this effect is known as evanescent wave coupling. The likelihood that the particle will pass through the barrier is given by the transmission coefficient, whereas the likelihood that it is reflected is given by the reflection coefficient. Schrödinger's wave-equation allows these coefficients to be calculated.

  5. Gibbs phenomenon - Wikipedia

    en.wikipedia.org/wiki/Gibbs_phenomenon

    Functional approximation of square wave using 5 harmonics Functional approximation of square wave using 25 harmonics Functional approximation of square wave using 125 harmonics. The Gibbs phenomenon is a behavior of the Fourier series of a function with a jump discontinuity and is described as the following:

  6. Step potential - Wikipedia

    en.wikipedia.org/wiki/Step_potential

    The time-independent Schrödinger equation for the wave function is ^ = [+ ()] = (), where Ĥ is the Hamiltonian, ħ is the reduced Planck constant, m is the mass, E the energy of the particle. The step potential is simply the product of V 0 , the height of the barrier, and the Heaviside step function : V ( x ) = { 0 , x < 0 V 0 , x ≥ 0 ...

  7. Quantum jump method - Wikipedia

    en.wikipedia.org/wiki/Quantum_jump_method

    The quantum jump method is an approach which is much like the master-equation treatment except that it operates on the wave function rather than using a density matrix approach. The main component of this method is evolving the system's wave function in time with a pseudo-Hamiltonian; where at each time step, a quantum jump (discontinuous ...

  8. Coulomb wave function - Wikipedia

    en.wikipedia.org/wiki/Coulomb_wave_function

    The Coulomb wave equation for a single charged particle of mass is the Schrödinger equation with Coulomb potential [1] (+) = (),where = is the product of the charges of the particle and of the field source (in units of the elementary charge, = for the hydrogen atom), is the fine-structure constant, and / is the energy of the particle.

  9. Wave function - Wikipedia

    en.wikipedia.org/wiki/Wave_function

    In this case, the wave functions are square integrable. One can initially take the function space as the space of square integrable functions, usually denoted L 2. The displayed functions are solutions to the Schrödinger equation. Obviously, not every function in L 2 satisfies the Schrödinger equation for the hydrogen atom.