enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  3. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    In SI, this slope or derivative is expressed in the units of meters per second per second (/, usually termed "meters per second-squared"). Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the ...

  4. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    velocity is the derivative (with respect to time) of an object's displacement (distance from the original position) acceleration is the derivative (with respect to time) of an object's velocity, that is, the second derivative (with respect to time) of an object's position. For example, if an object's position on a line is given by

  5. Displacement (geometry) - Wikipedia

    en.wikipedia.org/wiki/Displacement_(geometry)

    In geometry and mechanics, a displacement is a vector whose length is the shortest distance from the initial to the final position of a point P undergoing motion. [1] It quantifies both the distance and direction of the net or total motion along a straight line from the initial position to the final position of the point trajectory .

  6. Time derivative - Wikipedia

    en.wikipedia.org/wiki/Time_derivative

    With this form for the displacement, the velocity now is found. The time derivative of the displacement vector is the velocity vector. In general, the derivative of a vector is a vector made up of components each of which is the derivative of the corresponding component of the original vector. Thus, in this case, the velocity vector is:

  7. Debye function - Wikipedia

    en.wikipedia.org/wiki/Debye_function

    1.4 Derivative. 2 Applications in ... the mean squared displacement refers to just once Cartesian component u x of the vector u that describes the displacement of ...

  8. Position (geometry) - Wikipedia

    en.wikipedia.org/wiki/Position_(geometry)

    The vector of coordinates forms the coordinate vector or n-tuple (x 1, x 2, …, x n). Each coordinate x i may be parameterized a number of parameters t. One parameter x i (t) would describe a curved 1D path, two parameters x i (t 1, t 2) describes a curved 2D surface, three x i (t 1, t 2, t 3) describes a curved 3D volume of space, and so on.

  9. Linear motion - Wikipedia

    en.wikipedia.org/wiki/Linear_motion

    The SI unit of displacement is the metre. [5] [6] If is the initial position of an object and is the final position, then mathematically the displacement is given by: = The equivalent of displacement in rotational motion is the angular displacement measured in radians. The displacement of an object cannot be greater than the distance because it ...