Search results
Results from the WOW.Com Content Network
The Jordan curve theorem can be proved from the Brouwer fixed point theorem (in 2 dimensions), [4] and the Brouwer fixed point theorem can be proved from the Hex theorem: "every game of Hex has at least one winner", from which we obtain a logical implication: Hex theorem implies Brouwer fixed point theorem, which implies Jordan curve theorem.
The mountain pass theorem is an existence theorem from the calculus of variations, originally due to Antonio Ambrosetti and Paul Rabinowitz. [ 1 ] [ 2 ] Given certain conditions on a function, the theorem demonstrates the existence of a saddle point .
By the Artin–Wedderburn theorem, a central simple algebra is the matrix ring of a division ring; thus, each similarity class is represented by a unique division ring. For example, Br(k) is trivial if k is a finite field or an algebraically closed field (more generally quasi-algebraically closed field; cf. Tsen's theorem).
For any interior point P, the sum of the lengths of the perpendiculars s + t + u equals the height of the equilateral triangle.. Viviani's theorem, named after Vincenzo Viviani, states that the sum of the shortest distances from any interior point to the sides of an equilateral triangle equals the length of the triangle's altitude. [1]
The theorem is named after Russian mathematician Pafnuty Chebyshev, although it was first formulated by his friend and colleague Irénée-Jules Bienaymé. [4]: 98 The theorem was first proved by Bienaymé in 1853 [5] and more generally proved by Chebyshev in 1867. [6] [7] His student Andrey Markov provided another proof in his 1884 Ph.D. thesis ...
Let = be an positive matrix: > for ,.Then the following statements hold. There is a positive real number r, called the Perron root or the Perron–Frobenius eigenvalue (also called the leading eigenvalue, principal eigenvalue or dominant eigenvalue), such that r is an eigenvalue of A and any other eigenvalue λ (possibly complex) in absolute value is strictly smaller than r, |λ| < r.
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra.It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).
When a triple of numbers a, b and c forms a primitive Pythagorean triple, then (c minus the even leg) and one-half of (c minus the odd leg) are both perfect squares; however this is not a sufficient condition, as the numbers {1, 8, 9} pass the perfect squares test but are not a Pythagorean triple since 1 2 + 8 2 ≠ 9 2. At most one of a, b, c ...