Search results
Results from the WOW.Com Content Network
The four 4th roots of −1, none of which are real The three 3rd roots of −1, one of which is a negative real. An n th root of a number x, where n is a positive integer, is any of the n real or complex numbers r whose nth power is x:
If this definition is used, the cube root of a negative number is a negative number. The three cube roots of 1. If x and y are allowed to be complex, then there are three solutions (if x is non-zero) and so x has three cube roots. A real number has one real cube root and two further cube roots which form a complex conjugate pair.
Powers of a number with absolute value less than one tend to zero: b n → 0 as n → ∞ when | b | < 1. Any power of one is always one: b n = 1 for all n for b = 1. Powers of a negative number alternate between positive and negative as n alternates between even and odd, and thus do not tend to any limit as n grows.
The square root is multivalued. One value can be chosen by convention as the principal value; in the case of the square root the non-negative value is the principal value, but there is no guarantee that the square root given as the principal value of the square of a number will be equal to the original number (e.g. the principal square root of ...
The laws of arithmetic for negative numbers ensure that the common-sense idea of an opposite is reflected in arithmetic. For example, − (−3) = 3 because the opposite of an opposite is the original value. Negative numbers are usually written with a minus sign in front. For example, −3 represents a negative quantity with a magnitude of ...
1. Denotes addition and is read as plus; for example, 3 + 2. 2. Denotes that a number is positive and is read as plus. Redundant, but sometimes used for emphasizing that a number is positive, specially when other numbers in the context are or may be negative; for example, +2. 3.
The first mention of the number line used for operation purposes is found in John Wallis's Treatise of Algebra (1685). [2] [page needed] In his treatise, Wallis describes addition and subtraction on a number line in terms of moving forward and backward, under the metaphor of a person walking.
The square root of 2 is equal to the length of the hypotenuse of a right triangle with legs of length 1 and is therefore a constructible number. In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length | | can be constructed with compass and straightedge in a finite number of steps.