enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    In mathematics, the dot product or scalar product [note 1] is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry, the dot product of the Cartesian coordinates of two vectors is widely used.

  3. Dyadics - Wikipedia

    en.wikipedia.org/wiki/Dyadics

    The dot product takes in two vectors and returns a scalar, while the cross product [a] returns a pseudovector. Both of these have various significant geometric interpretations and are widely used in mathematics, physics, and engineering. The dyadic product takes in two vectors and returns a second order tensor called a dyadic in this context. A ...

  4. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    The geometric interpretation of curl as rotation corresponds to identifying bivectors (2-vectors) in 3 dimensions with the special orthogonal Lie algebra of infinitesimal rotations (in coordinates, skew-symmetric 3 × 3 matrices), while representing rotations by vectors corresponds to identifying 1-vectors (equivalently, 2-vectors) and ...

  5. Glossary of calculus - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_calculus

    In Euclidean geometry, the dot product of the Cartesian coordinates of two vectors is widely used and often called "the" inner product (or rarely projection product) of Euclidean space even though it is not the only inner product that can be defined on Euclidean space; see also inner product space. double integral

  6. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    The dot product takes two vectors x and y, and produces a real number x ⋅ y. If x and y are represented in Cartesian coordinates, then the dot product is defined by () = + +. The dot product satisfies the properties [1] It is symmetric in x and y: x ⋅ y = y ⋅ x.

  7. Geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Geometric_algebra

    A ⁠ ⁠-graded vector space structure can be established on a geometric algebra by use of the exterior product that is naturally induced by the geometric product. Since the geometric product and the exterior product are equal on orthogonal vectors, this grading can be conveniently constructed by using an orthogonal basis ⁠ {, …,} ⁠.

  8. Inner product space - Wikipedia

    en.wikipedia.org/wiki/Inner_product_space

    Inner products allow formal definitions of intuitive geometric notions, such as lengths, angles, and orthogonality (zero inner product) of vectors. Inner product spaces generalize Euclidean vector spaces, in which the inner product is the dot product or scalar product of Cartesian coordinates.

  9. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    The dot products on every tangent plane, packaged together into one mathematical object, are a Riemannian metric. In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined.