Search results
Results from the WOW.Com Content Network
Alternatively, the blend is the polygon ρ 0 σ 0, ρ 1 σ 1 where ρ and σ are the generating mirrors of P and Q placed in orthogonal subspaces. [9] The blending operation is commutative, associative and idempotent. Every regular skew polygon can be expressed as the blend of a unique [i] set of planar polygons. [9]
In geometry, a spherical polyhedron or spherical tiling is a tiling of the sphere in which the surface is divided or partitioned by great arcs into bounded regions called spherical polygons. A polyhedron whose vertices are equidistant from its center can be conveniently studied by projecting its edges onto the sphere to obtain a corresponding ...
Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, geodesics are great circles. Spherical trigonometry is of great importance for calculations in astronomy, geodesy, and ...
Interactive geometry software (IGS) or dynamic geometry environments (DGEs) are computer programs which allow one to create and then manipulate geometric constructions, primarily in plane geometry. In most IGS, one starts construction by putting a few points and using them to define new objects such as lines , circles or other points.
Great circles in many ways play the same logical role in spherical geometry as lines in Euclidean geometry, e.g., as the sides of (spherical) triangles. This is more than an analogy; spherical and plane geometry and others can all be unified under the umbrella of geometry built from distance measurement , where "lines" are defined to mean ...
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes.Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.
Given a unit sphere, a "spherical triangle" on the surface of the sphere is defined by the great circles connecting three points u, v, and w on the sphere (shown at right). If the lengths of these three sides are a (from u to v ), b (from u to w ), and c (from v to w ), and the angle of the corner opposite c is C , then the (first) spherical ...
In Magnus Wenninger's Spherical models, polyhedra are given geodesic notation in the form {3,q+} b,c, where {3,q} is the Schläfli symbol for the regular polyhedron with triangular faces, and q-valence vertices. The + symbol indicates the valence of the vertices being increased.