Search results
Results from the WOW.Com Content Network
Let Xx + Yy + Zz = 0 be the equation of a line, with (X, Y, Z) being designated its line coordinates in a dual projective plane. The condition that the line is tangent to the curve can be expressed in the form F(X, Y, Z) = 0 which is the tangential equation of the curve. At a point (p, q, r) on the curve, the tangent is given by
The tangent line to a point on a differentiable curve can also be thought of as a tangent line approximation, the graph of the affine function that best approximates the original function at the given point. [3] Similarly, the tangent plane to a surface at a given point is the plane that "just touches" the
Solutions to a slope field are functions drawn as solid curves. A slope field shows the slope of a differential equation at certain vertical and horizontal intervals on the x-y plane, and can be used to determine the approximate tangent slope at a point on a curve, where the curve is some solution to the differential equation.
Lines in this plane correspond to points in the dual projective plane and the lines tangent to a given algebraic curve C correspond to points in an algebraic curve C * called the dual curve. In the correspondence between the projective plane and its dual, points on C correspond to lines tangent C *, so the dual of C * can be identified with C.
Low-order polynomials tend to be smooth and high order polynomial curves tend to be "lumpy". To define this more precisely, the maximum number of inflection points possible in a polynomial curve is n-2, where n is the order of the polynomial equation. An inflection point is a location on the curve where it switches from a positive radius to ...
A rising point of inflection is a point where the derivative is positive on both sides of the point; in other words, it is an inflection point near which the function is increasing. For a smooth curve given by parametric equations , a point is an inflection point if its signed curvature changes from plus to minus or from minus to plus, i.e ...
The osculating plane has the special property that the distance from the curve to the osculating plane is O(s 3), while the distance from the curve to any other plane is no better than O(s 2). This can be seen from the above Taylor expansion. Thus in a sense the osculating plane is the closest plane to the curve at a given point.
It follows that at least one tangent line to γ must pass through any given point in the plane. If y > x 3 and y > 0 then each point (x,y) has exactly one tangent line to γ passing through it. The same is true if y < x 3 y < 0. If y < x 3 and y > 0 then each point (x,y) has exactly three distinct tangent lines to γ passing through it.