Search results
Results from the WOW.Com Content Network
In mathematics, the direct method in the calculus of variations is a general method for constructing a proof of the existence of a minimizer for a given functional, [1] introduced by Stanisław Zaremba and David Hilbert around 1900. The method relies on methods of functional analysis and topology. As well as being used to prove the existence of ...
Calculus of variations is concerned with variations of functionals, which are small changes in the functional's value due to small changes in the function that is its argument. The first variation [l] is defined as the linear part of the change in the functional, and the second variation [m] is defined as the quadratic part. [22]
A multigrid method with an intentionally reduced tolerance can be used as an efficient preconditioner for an external iterative solver, e.g., [7] The solution may still be obtained in () time as well as in the case where the multigrid method is used as a solver.
Numerical methods for solving first-order IVPs often fall into one of two large categories: [5] linear multistep methods, or Runge–Kutta methods.A further division can be realized by dividing methods into those that are explicit and those that are implicit.
The Rayleigh–Ritz method for solving boundary-value problems in elasticity and wave propagation; Fermat's principle in geometrical optics; Hamilton's principle in classical mechanics; Maupertuis' principle in classical mechanics; The principle of least action in mechanics, electromagnetic theory, and quantum mechanics; The variational method ...
In numerical analysis, the shooting method is a method for solving a boundary value problem by reducing it to an initial value problem.It involves finding solutions to the initial value problem for different initial conditions until one finds the solution that also satisfies the boundary conditions of the boundary value problem.
The method of separation of variables is also used to solve a wide range of linear partial differential equations with boundary and initial conditions, such as the heat equation, wave equation, Laplace equation, Helmholtz equation and biharmonic equation.
In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...