Search results
Results from the WOW.Com Content Network
Interference pattern is the term applied to the dispersion pattern of a line array. It means that when you stack several loudspeakers vertically, the vertical dispersion angle decreases because the individual drivers are out of phase with each other at listening positions off-axis in the vertical plane.
A typical top-end speaker, driven by a typical 100watt power amplifier, cannot produce peak levels much above 105 dB SPL at 1 m (which translates roughly to 105 dB at the listening position from a pair of speakers in a typical listening room). Achieving truly realistic reproduction requires speakers capable of much higher levels than this ...
At this frequency, the voice coil is vibrating in the speaker's magnetic field with maximum peak-to-peak amplitude and velocity. The back EMF generated by this movement is also at its maximum. The electrical impedance of the speaker varies with the back EMF and thus with the applied frequency.
A tweeter or treble speaker is a special type of loudspeaker (usually dome, inverse dome or horn-type) that is designed to produce high audio frequencies, typically up to 100 kHz. The name is derived from the high pitched sounds made by some birds (tweets), especially in contrast to the low woofs made by many dogs , after which low-frequency ...
An amplifier must be able to suppress resonances caused by mechanical motion (e.g., inertia) of a speaker cone, especially a low-frequency driver with greater mass. For conventional loudspeaker drivers, this essentially involves ensuring that the output impedance of the amplifier is close to zero and that the speaker wires are sufficiently ...
The midwoofer-tweeter-midwoofer loudspeaker configuration (called MTM, for short) was a design arrangement from the late 1960s that suffered from serious lobing issues that prevented its popularity until it was perfected by Joseph D'Appolito as a way of correcting the inherent lobe tilting of a typical mid-tweeter (MT) configuration, at the crossover frequency, unless time-aligned. [1]
Schematic showing an electrostatic speaker's construction and its connections. The thickness of the diaphragm and grids has been exaggerated for the purpose of illustration. An electrostatic loudspeaker (ESL) is a loudspeaker design in which sound is generated by the force exerted on a membrane suspended in an electrostatic field .
A speaker with an efficiency of 100% (1.0) would output a watt for every watt of input. Considering the driver as a point source in an infinite baffle, at one metre this would be distributed over a hemisphere with area 2 π {\displaystyle 2\pi } m 2 for an intensity of 1 / ( 2 π ) {\displaystyle 1/(2\pi )} = 0.159155 W/m 2 .