Search results
Results from the WOW.Com Content Network
The problem is that, while virtual functions are dispatched dynamically in C++, function overloading is done statically. The problem described above can be resolved by simulating double dispatch, for example by using a visitor pattern. Suppose the existing code is extended so that both SpaceShip and ApolloSpacecraft are given the function
Type inference – C# 3 with implicitly typed local variables var and C# 9 target-typed new expressions new List comprehension – C# 3 LINQ; Tuples – .NET Framework 4.0 but it becomes popular when C# 7.0 introduced a new tuple type with language support [104] Nested functions – C# 7.0 [104] Pattern matching – C# 7.0 [104]
Another example is a Print(object o) function that executes different actions based on whether it's printing text or photos. The two different functions may be overloaded as Print(text_object T); Print(image_object P). If we write the overloaded print functions for all objects our program will "print", we never have to worry about the type of ...
The Linda model provides a distributed shared memory, known as a tuple space because its basic addressable unit is a tuple, an ordered sequence of typed data objects; specifically in Linda, a tuple is a sequence of up to 16 typed fields enclosed in parentheses". The tuple space is "logically shared by processes" which are referred to as workers ...
For example, in the expression (f(x)-1)/(f(x)+1), the function f cannot be called only once with its value used two times since the two calls may return different results. Moreover, in the few languages which define the order of evaluation of the division operator's operands, the value of x must be fetched again before the second call, since ...
To elaborate on the above example, consider a base class with no virtual functions. Whenever the base class calls another member function, it will always call its own base class functions. When we derive a class from this base class, we inherit all the member variables and member functions that were not overridden (no constructors or destructors).
C# 3.0 introduced type inference, allowing the type specifier of a variable declaration to be replaced by the keyword var, if its actual type can be statically determined from the initializer. This reduces repetition, especially for types with multiple generic type-parameters , and adheres more closely to the DRY principle.
In C and C++, constructs such as pointer type conversion and union — C++ adds reference type conversion and reinterpret_cast to this list — are provided in order to permit many kinds of type punning, although some kinds are not actually supported by the standard language.