Search results
Results from the WOW.Com Content Network
Molecular evolution describes how inherited DNA and/or RNA change over evolutionary time, and the consequences of this for proteins and other components of cells and organisms. Molecular evolution is the basis of phylogenetic approaches to describing the tree of life. Molecular evolution overlaps with population genetics, especially on shorter ...
Genetic variation can be identified at many levels. Identifying genetic variation is possible from observations of phenotypic variation in either quantitative traits (traits that vary continuously and are coded for by many genes, e.g., leg length in dogs) or discrete traits (traits that fall into discrete categories and are coded for by one or a few genes, e.g., white, pink, or red petal color ...
The application of the principles of genetics to naturally occurring populations, by scientists such as Theodosius Dobzhansky and Ernst Mayr, advanced the understanding of the processes of evolution. Dobzhansky's 1937 work Genetics and the Origin of Species helped bridge the gap between genetics and field biology by presenting the mathematical ...
Evolution is the change in the heritable characteristics of biological populations over successive generations. [1] [2] It occurs when evolutionary processes such as natural selection and genetic drift act on genetic variation, resulting in certain characteristics becoming more or less common within a population over successive generations. [3]
VI. Hologenomic evolution is most easily understood by equating a gene in the nuclear genome to a microbe in the microbiome; VII. The hologenome concept fits squarely into genetics and accommodates multilevel selection theory; VIII. The hologenome is shaped by selection and neutrality; IX. Hologenomic speciation blends genetics and symbiosis
Mosaic evolution (or modular evolution) is the concept, mainly from palaeontology, that evolutionary change takes place in some body parts or systems without simultaneous changes in other parts. [1] Another definition is the "evolution of characters at various rates both within and between species".
Evolution is a change in the frequency of alleles in a population over time. Mutations occur at random and in the Darwinian evolution model natural selection acts on the genetic variation in a population that has arisen through this mutation. [2] These mutations can be beneficial or deleterious and are selected for or against based on that factor.
Population genetics began as a reconciliation of Mendelian inheritance and biostatistics models. Natural selection will only cause evolution if there is enough genetic variation in a population. Before the discovery of Mendelian genetics, one common hypothesis was blending inheritance. But with blending inheritance, genetic variance would be ...