Search results
Results from the WOW.Com Content Network
In chemistry, orbital hybridisation (or hybridization) is the concept of mixing atomic orbitals to form new hybrid orbitals (with different energies, shapes, etc., than the component atomic orbitals) suitable for the pairing of electrons to form chemical bonds in valence bond theory.
Bent's rule predicts that, in order to stabilize the unshared, closely held nonbonding electrons, lone pair orbitals should take on high s character. On the other hand, an unoccupied (empty) nonbonding orbital can be thought of as the limiting case of an electronegative substituent, with electron density completely polarized towards the ligand ...
The π system of furan and lone pairs. Note that one of the oxygen lone pairs participates in conjugation in a p orbital, while the other lone pair is in an sp 2 hybridized orbital in the plane of the molecule and not part of the π system. The participation of six electrons in the π system makes furan aromatic (see below).
Because nuclear spins are coupled through bonding electrons, and the electron penetration to the nucleus is dependent on s character of the hybrid orbital used in bonding, J-coupling constants determined through NMR spectroscopy is a convenient experimental parameter that can be used to estimate the hybridization index of orbitals on carbon.
Sigma bonds occur when the orbitals of two shared electrons overlap head-to-head, with the electron density most concentrated between nuclei. Pi bonds occur when two orbitals overlap when they are parallel. [9] For example, a bond between two s-orbital electrons is a sigma bond, because two spheres are always coaxial. In terms of bond order ...
Therefore, for two electrons to occupy the same orbital, and thereby have the same orbital quantum number, they must have different spin quantum numbers. This also limits the number of electrons in the same orbital to two. The pairing of spins is often energetically favorable, and electron pairs therefore play a large role in chemistry.
As predicted by Hückel molecular orbital theory, the lowest π orbital in such molecules is non-degenerate and the higher orbitals form degenerate pairs. Benzene's lowest π orbital is non-degenerate and can hold 2 electrons, and its next 2 π orbitals form a degenerate pair which can hold 4 electrons.
In chemical bonds, an orbital overlap is the concentration of orbitals on adjacent atoms in the same regions of space. Orbital overlap can lead to bond formation. Linus Pauling explained the importance of orbital overlap in the molecular bond angles observed through experimentation; it is the basis for orbital hybridization.