Search results
Results from the WOW.Com Content Network
Each component in itself is non-tumoricidal, but when combined they can be highly lethal to cancer cells. 1) Boron compound (b) is selectively absorbed by cancer cell(s). 2) Neutron beam (n) is aimed at cancer site. 3) Boron absorbs neutron. 4) Boron disintegrates emitting cancer-killing radiation.
Radiation therapy kills cancer cells in two ways depending on the effective energy of the radiative source. The amount of energy deposited as the particles traverse a section of tissue is referred to as the linear energy transfer (LET). X-rays produce low LET radiation, and protons and neutrons produce high LET radiation.
Neutron radiation is a form of ionizing radiation that presents as free neutrons. Typical phenomena are nuclear fission or nuclear fusion causing the release of free neutrons, which then react with nuclei of other atoms to form new nuclides —which, in turn, may trigger further neutron radiation.
By accumulating boron-10 in cancerous cells and subjecting the tumor to neutron radiation, high-energy α particles are selectively delivered only to the target cells. [1] In order for BNCT to be effective, safe, and successful, therapeutic candidates must be non-toxic, must selectively accumulate in target tissue and not normal tissue, and ...
Radiation used for cancer treatment is called ionizing radiation because it forms ions in the cells of the tissues it passes through as it dislodges electrons from atoms. This can kill cells or change genes so the cells cannot grow. Other forms of radiation such as radio waves, microwaves, and light waves are called non-ionizing.
Particle therapy is a form of external beam radiotherapy using beams of energetic neutrons, protons, or other heavier positive ions for cancer treatment. The most common type of particle therapy as of August 2021 is proton therapy.
The types R of ionizing radiation most considered in RBE evaluation are X-rays and gamma radiation (both consisting of photons), alpha radiations (helium-4 nuclei), beta radiation (electrons and positrons), neutron radiation, and heavy nuclei, including the fragments of nuclear fission. For some kinds of radiation, the RBE is strongly dependent ...
Radium-224 is a radioactive atom that is utilized as a source of alpha radiation in a cancer treatment device called DaRT (diffusing alpha emitters radiation therapy). Each radium-224 atom undergoes a decay process producing 6 daughter atoms. During this process, 4 alpha particles are emitted.