Search results
Results from the WOW.Com Content Network
Sisyphus cooling can be achieved by shining two counter-propagating laser beams with orthogonal polarization onto an atom sample. Atoms moving through the potential landscape along the direction of the standing wave lose kinetic energy as they move to a potential maximum, at which point optical pumping moves them back to a lower energy state, thus lowering the total energy of the atom.
Sextupole electromagnet as used within the storage ring of the Australian Synchrotron to focus and steer the electron beam. In accelerator physics strong focusing or alternating-gradient focusing is the principle that, using sets of multiple electromagnets, it is possible to make a particle beam simultaneously converge in both directions perpendicular to the direction of travel.
The simplest definition for a potential gradient F in one dimension is the following: [1] = = where ϕ(x) is some type of scalar potential and x is displacement (not distance) in the x direction, the subscripts label two different positions x 1, x 2, and potentials at those points, ϕ 1 = ϕ(x 1), ϕ 2 = ϕ(x 2).
This result is for a specific and very simple model, but it does illustrate general features of diffusioosmoisis: 1) the hydrostatic pressure is, by definition (flow induced by pressure gradients in the bulk is a common but separate physical phenomenon) uniform in the bulk, but there is a gradient in the pressure in the interface, 2) this ...
The MCSGP process consists of several, at least two, chromatographic columns which are switched in position opposite to the flow direction. Most of the columns are equipped with a gradient pump to adjust the modifier concentration at the column inlet. Some columns are connected directly, so that non pure product streams are internally recycled.
The gradient of F is then normal to the hypersurface. Similarly, an affine algebraic hypersurface may be defined by an equation F(x 1, ..., x n) = 0, where F is a polynomial. The gradient of F is zero at a singular point of the hypersurface (this is the definition of a singular point). At a non-singular point, it is a nonzero normal vector.
A numerical solution to the one dimensional Allen-Cahn equation. The Allen–Cahn equation (after John W. Cahn and Sam Allen) is a reaction–diffusion equation of mathematical physics which describes the process of phase separation in multi-component alloy systems, including order-disorder transitions.
[1] [2] [3] There is a common source of all these effects—the so-called interfacial 'double layer' of charges. Influence of an external force on the diffuse layer generates tangential motion of a fluid with respect to an adjacent charged surface. This force might be electric, pressure gradient, concentration gradient, or gravity.