enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Limaçon - Wikipedia

    en.wikipedia.org/wiki/Limaçon

    Construction of the limaçon r = 2 + cos(π – θ) with polar coordinates' origin at (x, y) = (⁠ 1 / 2 ⁠, 0). In geometry, a limaçon or limacon / ˈ l ɪ m ə s ɒ n /, also known as a limaçon of Pascal or Pascal's Snail, is defined as a roulette curve formed by the path of a point fixed to a circle when that circle rolls around the outside of a circle of equal radius.

  3. Cochleoid - Wikipedia

    en.wikipedia.org/wiki/Cochleoid

    In geometry, a cochleoid is a snail-shaped curve similar to a strophoid which can be represented by the polar equation r = a sin ⁡ θ θ , {\displaystyle r={\frac {a\sin \theta }{\theta }},} the Cartesian equation

  4. Cartesian coordinate system - Wikipedia

    en.wikipedia.org/wiki/Cartesian_coordinate_system

    The equation of a circle is (x − a) 2 + (y − b) 2 = r 2 where a and b are the coordinates of the center (a, b) and r is the radius. Cartesian coordinates are named for René Descartes, whose invention of them in the 17th century revolutionized mathematics by allowing the expression of problems of geometry in terms of algebra and calculus.

  5. Rotation of axes in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_of_axes_in_two...

    In mathematics, a rotation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x′y′-Cartesian coordinate system in which the origin is kept fixed and the x′ and y′ axes are obtained by rotating the x and y axes counterclockwise through an angle .

  6. Cycloid - Wikipedia

    en.wikipedia.org/wiki/Cycloid

    The cycloid, with the cusps pointing upward, is the curve of fastest descent under uniform gravity (the brachistochrone curve). It is also the form of a curve for which the period of an object in simple harmonic motion (rolling up and down repetitively) along the curve does not depend on the object's starting position (the tautochrone curve).

  7. Plane curve - Wikipedia

    en.wikipedia.org/wiki/Plane_curve

    A plane curve can often be represented in Cartesian coordinates by an implicit equation of the form (,) = for some specific function f.If this equation can be solved explicitly for y or x – that is, rewritten as = or = for specific function g or h – then this provides an alternative, explicit, form of the representation.

  8. Cissoid of Diocles - Wikipedia

    en.wikipedia.org/wiki/Cissoid_of_Diocles

    Cissoid of Diocles traced by points M with ¯ = ¯ Animation visualizing the Cissoid of Diocles. In geometry, the cissoid of Diocles (from Ancient Greek κισσοειδής (kissoeidēs) 'ivy-shaped'; named for Diocles) is a cubic plane curve notable for the property that it can be used to construct two mean proportionals to a given ratio.

  9. Pedal curve - Wikipedia

    en.wikipedia.org/wiki/Pedal_curve

    The locus of points Y is called the contrapedal curve. The orthotomic of a curve is its pedal magnified by a factor of 2 so that the center of similarity is P. This is locus of the reflection of P through the tangent line T. The pedal curve is the first in a series of curves C 1, C 2, C 3, etc., where C 1 is the pedal of C, C 2 is the pedal of ...