Search results
Results from the WOW.Com Content Network
The geometric series on the real line. In mathematics, the infinite series 1 / 2 + 1 / 4 + 1 / 8 + 1 / 16 + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation, this may be expressed as
Using sigma summation notation the sum of the first m terms of the series can be expressed as = (). The infinite series diverges, meaning that its sequence of partial sums, (1, −1, 2, −2, 3, ...), does not tend towards any finite limit.
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
Greek mathematician Archimedes produced the first known summation of an infinite series with a method that is still used in the area of calculus today. He used the method of exhaustion to calculate the area under the arc of a parabola with the summation of an infinite series, [5] and gave a remarkably accurate approximation of π. [80] [81]
The same geometric strategy also works for triangles, as in the figure on the right: [4] if the large triangle has area 1, then the largest black triangle has area 1 / 4 , and so on. The figure as a whole has a self-similarity between the large triangle and its upper sub-triangle.
In capital-sigma notation this is expressed = or = + with a n > 0 for all n. Like any series, an alternating series is a convergent series if and only if the sequence of partial sums of the series converges to a limit .
The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .
In mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence (,,, …) defines a series S that is denoted = + + + = =. The n th partial sum S n is the sum of the first n terms of the sequence; that is,