Search results
Results from the WOW.Com Content Network
An example of a convex polygon: a regular pentagon. In geometry, a convex polygon is a polygon that is the boundary of a convex set. This means that the line segment between two points of the polygon is contained in the union of the interior and the boundary of the polygon. In particular, it is a simple polygon (not self-intersecting). [1]
All convex polygons are simple. Concave: Non-convex and simple. There is at least one interior angle greater than 180°. Star-shaped: the whole interior is visible from at least one point, without crossing any edge. The polygon must be simple, and may be convex or concave. All convex polygons are star-shaped.
Convex geometry is a relatively young mathematical discipline. Although the first known contributions to convex geometry date back to antiquity and can be traced in the works of Euclid and Archimedes, it became an independent branch of mathematics at the turn of the 20th century, mainly due to the works of Hermann Brunn and Hermann Minkowski in dimensions two and three.
In geometry, a polygon is traditionally a plane figure that is bounded by a finite chain of straight line segments closing in a loop to form a closed chain. These segments are called its edges or sides, and the points where two of the edges meet are the polygon's vertices (singular: vertex) or corners.
Convex polygon; Concave polygon; Constructible polygon; Cyclic polygon; ... Table of Shapes Section Sub-Section Sup-Section Name Algebraic Curves ¿ Curves ¿ Curves:
Star polygon – there are multiple types of stars Pentagram - star polygon with 5 sides; Hexagram – star polygon with 6 sides Star of David (example) Heptagram – star polygon with 7 sides; Octagram – star polygon with 8 sides Star of Lakshmi (example) Enneagram - star polygon with 9 sides; Decagram - star polygon with 10 sides
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex. There are only five such polyhedra:
There are 17 combinations of regular convex polygons that form 21 types of plane-vertex tilings. [6] [7] Polygons in these meet at a point with no gap or overlap. Listing by their vertex figures, one has 6 polygons, three have 5 polygons, seven have 4 polygons, and ten have 3 polygons. [8]