Search results
Results from the WOW.Com Content Network
Translation is one of the key energy consumers in cells, hence it is strictly regulated. Numerous mechanisms have evolved that control and regulate translation in eukaryotes as well as prokaryotes. Regulation of translation can impact the global rate of protein synthesis which is closely coupled to the metabolic and proliferative state of a cell.
The process of amino acid building to create protein in translation is a subject of various physic models for a long time starting from the first detailed kinetic models such as [26] or others taking into account stochastic aspects of translation and using computer simulations. Many chemical kinetics-based models of protein synthesis have been ...
The corresponding mechanisms are primarily targeted on the control of ribosome recruitment on the initiation codon, but can also involve modulation of peptide elongation, termination of protein synthesis, or ribosome biogenesis. While these general concepts are widely conserved, some of the finer details in this sort of regulation have been ...
Protein synthesis is a very similar process for both prokaryotes and eukaryotes but there are some distinct differences. [1] Protein synthesis can be divided broadly into two phases: transcription and translation. During transcription, a section of DNA encoding a protein, known as a gene, is converted into a molecule called messenger RNA (mRNA).
Protein anabolism is the process by which proteins are formed from amino acids. It relies on five processes: amino acid synthesis, transcription , translation , post translational modifications , and protein folding .
Initiation of translation in bacteria involves the assembly of the components of the translation system, which are: the two ribosomal subunits (50S and 30S subunits); the mature mRNA to be translated; the tRNA charged with N-formylmethionine (the first amino acid in the nascent peptide); guanosine triphosphate (GTP) as a source of energy, and the three prokaryotic initiation factors IF1, IF2 ...
Then the large ribosomal subunit will bind and protein synthesis will continue. [7] The binding of the large subunit causes a conformational change in the 70S, which opens another site for protein translation. [6] In order to form the translation complex with the 50S subunit, the 30S subunit must bind IF-1, IF-2, IF-3, mRNA, and f-met-tRNA.
Thus translation and transcription are parallel processes. Bacterial mRNA are usually polycistronic and contain multiple ribosome binding sites. Translation initiation is the most highly regulated step of protein synthesis in prokaryotes. [5] The rate of translation depends on two factors: the rate at which a ribosome is recruited to the RBS