Search results
Results from the WOW.Com Content Network
In logic, two propositions and are mutually exclusive if it is not logically possible for them to be true at the same time; that is, () is a tautology. To say that more than two propositions are mutually exclusive, depending on the context, means either 1. "() () is a tautology" (it is not logically possible for more than one proposition to be true) or 2. "() is a tautology" (it is not ...
The MECE principle (mutually exclusive and collectively exhaustive) is a grouping principle for separating a set of items into subsets that are mutually exclusive ...
mutually exclusive: nothing can belong simultaneously to both parts. If there is a concept A, and it is split into parts B and not-B, then the parts form a dichotomy: they are mutually exclusive, since no part of B is contained in not-B and vice versa, and they are jointly exhaustive, since they cover all of A, and together again give A.
Compare this to the concept of a set of mutually exclusive events. In such a set no more than one event can occur at a given time. (In some forms of mutual exclusion only one event can ever occur.) The set of all possible die rolls is both mutually exclusive and collectively exhaustive (i.e., "MECE"). The events 1 and 6 are mutually exclusive ...
In a dialect continuum, neighboring varieties are mutually intelligible, but differences mount with distance, so that more widely separated varieties may not be mutually intelligible. Intelligibility can be partial, as is the case with Azerbaijani and Turkish , or significant, as is the case with Bulgarian and Macedonian .
In probability theory, the complement of any event A is the event [not A], i.e. the event that A does not occur. [1] The event A and its complement [not A] are mutually exclusive and exhaustive. Generally, there is only one event B such that A and B are both mutually exclusive and exhaustive; that event is the complement of A.
In number theory, two integers a and b are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. [1] Consequently, any prime number that divides a does not divide b, and vice versa. This is equivalent to their greatest common divisor (GCD) being 1. [2]
Pairwise independence does not imply mutual independence, as shown by the following example attributed to S. Bernstein. [3] Suppose X and Y are two independent tosses of a fair coin, where we designate 1 for heads and 0 for tails.