enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hexagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Hexagonal_tiling

    Regular complex apeirogons have vertices and edges, where edges can contain 2 or more vertices. Regular apeirogons p{q}r are constrained by: 1/p + 2/q + 1/r = 1. Edges have p vertices, and vertex figures are r-gonal. [5] The first is made of 2-edges, three around every vertex, the second has hexagonal edges, three around every vertex.

  3. Tessellation - Wikipedia

    en.wikipedia.org/wiki/Tessellation

    If a geometric shape can be used as a prototile to create a tessellation, the shape is said to tessellate or to tile the plane. The Conway criterion is a sufficient, but not necessary, set of rules for deciding whether a given shape tiles the plane periodically without reflections: some tiles fail the criterion, but still tile the plane. [19]

  4. Architectonic and catoptric tessellation - Wikipedia

    en.wikipedia.org/wiki/Architectonic_and...

    Architectonic tessellation Catoptric tessellation Name Coxeter diagram Image Vertex figure Image Cells Name Cell Vertex figures; J 11,15 A 1 W 1 G 22 δ 4 nc [4,3,4] Cubille (Cubic honeycomb) Octahedron, Cubille: Cube, J 12,32 A 15 W 14 G 7 t 1 δ 4 nc [4,3,4] Cuboctahedrille (Rectified cubic honeycomb) Cuboid, Oblate octahedrille: Isosceles ...

  5. Tesseractic honeycomb - Wikipedia

    en.wikipedia.org/wiki/Tesseractic_honeycomb

    The tesseract can make a regular tessellation of 4-dimensional hyperbolic space, with 5 tesseracts around each face, with Schläfli symbol {4,3,3,5}, called an order-5 tesseractic honeycomb. The Ammann–Beenker tiling is an aperiodic tiling in 2 dimensions obtained by cut-and-project on the tesseractic honeycomb along an eightfold rotational ...

  6. Honeycomb (geometry) - Wikipedia

    en.wikipedia.org/wiki/Honeycomb_(geometry)

    It is an example of the more general mathematical tiling or tessellation in any number of dimensions. Its dimension can be clarified as n-honeycomb for a honeycomb of n-dimensional space. Honeycombs are usually constructed in ordinary Euclidean ("flat") space. They may also be constructed in non-Euclidean spaces, such as hyperbolic honeycombs.

  7. Cairo pentagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Cairo_pentagonal_tiling

    The snub square tiling, made of two squares and three equilateral triangles around each vertex, has a bilaterally symmetric Cairo tiling as its dual tiling. [13] The Cairo tiling can be formed from the snub square tiling by placing a vertex of the Cairo tiling at the center of each square or triangle of the snub square tiling, and connecting ...

  8. Einstein problem - Wikipedia

    en.wikipedia.org/wiki/Einstein_problem

    In plane geometry, the einstein problem asks about the existence of a single prototile that by itself forms an aperiodic set of prototiles; that is, a shape that can tessellate space but only in a nonperiodic way. Such a shape is called an einstein, a word play on ein Stein, German for "one stone". [2]

  9. Rhombic dodecahedral honeycomb - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedral_honeycomb

    The rhombic dodecahedral honeycomb (also dodecahedrille) is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is the Voronoi diagram of the face-centered cubic sphere-packing, which has the densest possible packing of equal spheres in ordinary space (see Kepler conjecture ).