Search results
Results from the WOW.Com Content Network
Remyelination is the process of propagating oligodendrocyte precursor cells to form oligodendrocytes to create new myelin sheaths on demyelinated axons in the Central nervous system (CNS). This is a process naturally regulated in the body and tends to be very efficient in a healthy CNS. [ 1 ]
The implementation of this method of study has long allowed for experimental observation of myelinogenesis in a model organism nerve that consists entirely of unmyelinated axons. Furthermore, the use of the rat optic nerve helped provide insight for early myelinogenesis researchers into improper and atypical courses of myelinogenesis.
In chronic MS lesions where remyelination is incomplete, there is evidence that there are oligodendrocytes with processes extending toward demyelinated axons, but they do not seem to be able to generate new myelin. [63] The mechanisms that regulate differentiation of OPCs into myelinating oligodendrocytes are an active area of research.
Neurodevelopment in the adult nervous system includes mechanisms such as remyelination, generation of new neurons, glia, axons, myelin or synapses. Neuroregeneration differs between the peripheral nervous system (PNS) and the central nervous system (CNS) by the functional mechanisms and especially, the extent and speed.
The study is published in the journal ... causing the OPCs to mature into oligodendrocytes and begin myelinating nerve axons nearby. ... “By carefully studying the biology of remyelination, we ...
In one study reported this year, a specific blood test was around 90% accurate in identifying Alzheimer’s in patients with cognitive symptoms seen in primary care and at specialized memory care ...
Repair processes, called remyelination, also play an important role in MS. Remyelination is one of the reasons why, especially in early phases of the disease, symptoms tend to decrease or disappear temporarily. Nevertheless, nerve damage and irreversible loss of neurons occur early in MS.
In a new study, scientists pinpointed the specific cells that are most impacted by the aging process, which could lead to new therapies for age-related diseases. Aging ‘hotspot’ found in brain ...