Search results
Results from the WOW.Com Content Network
A Venn diagram is a widely used diagram style that shows the logical relation between sets, popularized by John Venn (1834–1923) in the 1880s. The diagrams are used to teach elementary set theory, and to illustrate simple set relationships in probability, logic, statistics, linguistics and computer science.
The validity of a measurement tool (for example, a test in education) is the degree to which the tool measures what it claims to measure. [3] Validity is based on the strength of a collection of different types of evidence (e.g. face validity, construct validity, etc.) described in greater detail below.
These diagrams depict elements as points in the plane, and sets as regions inside closed curves. A Venn diagram consists of multiple overlapping closed curves, usually circles, each representing a set. The points inside a curve labelled S represent elements of the set S, while points outside the boundary represent elements not in the set S.
Information diagrams have also been applied to specific problems such as for displaying the information theoretic similarity between sets of ontological terms. [ 3 ] Venn diagram showing additive and subtractive relationships among various information measures associated with correlated variables X and Y .
Validity has two distinct fields of application in psychology. The first is test validity (or Construct validity ), the degree to which a test measures what it was designed to measure. The second is experimental validity (or External validity ), the degree to which a study supports the intended conclusion drawn from the results.
Another example of events being collectively exhaustive and mutually exclusive at same time are, event "even" (2,4 or 6) and event "odd" (1,3 or 5) in a random experiment of rolling a six-sided die. These both events are mutually exclusive because even and odd outcome can never occur at same time.
Venn diagram of information theoretic measures for three variables x, y, and z, represented by the lower left, lower right, and upper circles, respectively. The interaction information is represented by gray region, and it is the only one that can be negative.
[c] For example, Hill & Peterson (1968) [13] present the Venn diagram with shading and all. They give examples of Venn diagrams to solve example switching-circuit problems, but end up with this statement: "For more than three variables, the basic illustrative form of the Venn diagram is inadequate.