Search results
Results from the WOW.Com Content Network
The book has been called "a conspicuous milestone in nineteenth century biology" by Karl Sudhoff and "epoch making" By Francis Münzer. [3] The book, originally published in German, was translated to English in 1847 by Henry Spencer Smith in an edition that also contained the treatise Phytogenesis, by Matthias Schleiden. [4]
Matthias Jakob Schleiden (German: [maˈtiːas ˈjaːkɔp ˈʃlaɪdn̩]; [1] [2] 5 April 1804 – 23 June 1881) was a German botanist and co-founder of cell theory, along with Theodor Schwann and Rudolf Virchow.
From these conclusions about plants and animals, two of the three tenets of cell theory were postulated. 1. All living organisms are composed of one or more cells 2. The cell is the most basic unit of life. Schleiden's theory of free cell formation through crystallization was refuted in the 1850s by Robert Remak, Rudolf Virchow, and Albert ...
Demonstration of the cellular composition of all organisms, with each cell possessing all the characteristics of life, is attributed to the combined efforts of botanist Matthias Schleiden and zoologist Theodor Schwann (1810–1882) in the early 19th century, although Moldenhawer had already shown that plants were wholly cellular with each cell ...
The Purple Earth Hypothesis (PEH) is an astrobiological hypothesis, first proposed by molecular biologist Shiladitya DasSarma in 2007, [1] that the earliest photosynthetic life forms of Early Earth were based on the simpler molecule retinal rather than the more complex porphyrin-based chlorophyll, making the surface biosphere appear purplish ...
One ancient view of the origin of life, from Aristotle until the 19th century, is of spontaneous generation. [19] This theory held that "lower" animals such as insects were generated by decaying organic substances, and that life arose by chance. [20] [21] This was questioned from the 17th century, in works like Thomas Browne's Pseudodoxia ...
While features of some ancient apparent stromatolites are suggestive of biological activity, others possess features that are more consistent with abiotic (non-biological) precipitation. [17] Finding reliable ways to distinguish between biologically formed and abiotic stromatolites is an active area of research in geology.
The identification of plant fossils in Cambrian strata is an uncertain area in the evolutionary history of plants because of the small and soft-bodied nature of these plants. It is also difficult in a fossil of this age to distinguish among various similar appearing groups with simple branching patterns, and not all of these groups are plants.