Search results
Results from the WOW.Com Content Network
An application for Peirce's criterion is removing poor data points from observation pairs in order to perform a regression between the two observations (e.g., a linear regression). Peirce's criterion does not depend on observation data (only characteristics of the observation data), therefore making it a highly repeatable process that can be ...
The two regression lines are those estimated by ordinary least squares (OLS) and by robust MM-estimation. The analysis was performed in R using software made available by Venables and Ripley (2002). The two regression lines appear to be very similar (and this is not unusual in a data set of this size).
The book has seven chapters. [1] [4] The first is introductory; it describes simple linear regression (in which there is only one independent variable), discusses the possibility of outliers that corrupt either the dependent or the independent variable, provides examples in which outliers produce misleading results, defines the breakdown point, and briefly introduces several methods for robust ...
The modified Thompson Tau test is used to find one outlier at a time (largest value of δ is removed if it is an outlier). Meaning, if a data point is found to be an outlier, it is removed from the data set and the test is applied again with a new average and rejection region. This process is continued until no outliers remain in a data set.
An outlier may be defined as a data point that differs markedly from other observations. [6] [7] A high-leverage point are observations made at extreme values of independent variables. [8] Both types of atypical observations will force the regression line to be close to the point. [2]
In regression analysis, the distinction between errors and residuals is subtle and important, and leads to the concept of studentized residuals. Given an unobservable function that relates the independent variable to the dependent variable – say, a line – the deviations of the dependent variable observations from this function are the ...
In data analysis, anomaly detection (also referred to as outlier detection and sometimes as novelty detection) is generally understood to be the identification of rare items, events or observations which deviate significantly from thety of the data and do not conform to a well defined notion of normal behavior. [1]
Previously when assessing a dataset before running a linear regression, the possibility of outliers would be assessed using histograms and scatterplots. Both methods of assessing data points were subjective and there was little way of knowing how much leverage each potential outlier had on the results data.