Search results
Results from the WOW.Com Content Network
The rate at which fluid is filtered across vascular endothelium (transendothelial filtration) is determined by the sum of two outward forces, capillary pressure and interstitial protein osmotic pressure (), and two absorptive forces, plasma protein osmotic pressure and interstitial pressure (). The Starling equation describes these forces in ...
p is the hydrostatic pressure (Pa), ρ is the fluid density (kg/m 3), g is gravitational acceleration (m/s 2), z is the height (parallel to the direction of gravity) of the test area (m), 0 is the height of the zero reference point of the pressure (m) p_0 is the hydrostatic pressure field (Pa) along x and y at the zero reference point
Osmotic pressure is the minimum pressure which needs to be applied to a solution to prevent the inward flow of its pure solvent across a semipermeable membrane. [1] It is also defined as the measure of the tendency of a solution to take in its pure solvent by osmosis .
This result is for a specific and very simple model, but it does illustrate general features of diffusioosmoisis: 1) the hydrostatic pressure is, by definition (flow induced by pressure gradients in the bulk is a common but separate physical phenomenon) uniform in the bulk, but there is a gradient in the pressure in the interface, 2) this ...
According to the hypothesis, the high concentration of organic substances, particularly sugar, inside the phloem at a source such as a leaf creates a diffusion gradient (osmotic gradient) that draws water into the cells from the adjacent xylem. This creates turgor pressure, also called hydrostatic pressure, in the phloem. The hypothesis states ...
It is also called hydrostatic pressure, and is defined as the pressure in a fluid measured at a certain point within itself when at equilibrium. [2] Generally, turgor pressure is caused by the osmotic flow of water and occurs in plants, fungi, and bacteria. The phenomenon is also observed in protists that have cell walls. [3]
For example, a 1 molar solution of a substance contains 6.022 × 10 23 molecules per liter of that substance and at 0 °C it has an osmotic pressure of 2.27 MPa (22.4 atm). The osmotic pressure of the plasma affects the mechanics of the circulation in several ways. An alteration of the osmotic pressure difference across the membrane of a blood ...
The pressures that favor this movement are blood colloid osmotic pressure (BCOP) and interstitial fluid hydrostatic pressure (IFHP). [11] Whether a substance is filtrated or reabsorbed depends on the net filtration pressure (NFP), which is the difference between hydrostatic (BHP and IFHP) and osmotic pressures (IFOP and BCOP). [5]