Search results
Results from the WOW.Com Content Network
Otoliths (sagittae) are bilaterally symmetrical, with each fish having one right and one left. Separating recovered otoliths into right and left, therefore, allows one to infer a minimum number of prey individuals ingested for a given fish species. Otolith size is also proportional to the length and weight of a fish.
Over time, there was two changes that occurred in parallel when referring to the evolution of the otolithic membrane. First, otoliths that were present in amphibians and reptiles were replaced by a structurally differentiated otolithic membrane. Second, the spindle-shaped aragonitic otoconia were replaced by calcitic barrel-shaped otoconia.
Drawing of the statocyst system Statocysts (ss) and statolith (sl) inside the head of sea snail Gigantopelta chessoia. The statocyst is a balance sensory receptor present in some aquatic invertebrates, including bivalves, [1] cnidarians, [2] ctenophorans, [3] echinoderms, [4] cephalopods, [5] [6] crustaceans, [7] and gastropods, [8] A similar structure is also found in Xenoturbella. [9]
The otoliths begin to form shortly after the fish hatches. Otoliths are composed of a crystalline calcium carbonate structure, in the form of aragonite, on a protein matrix. Calcium carbonate is diffused through the endolymph cell membrane and the aragonite layers are permanently deposited in discrete increments. These increments are ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
The statoliths have sunk to the lowest part of the cell where they make contact with the plasma membrane. It is this contact that might be responsible for triggering the release or redistribution of auxin, although the exact molecular mechanisms by which the accumulation of statoliths at the bottom of the cell regulates the distribution of ...
It is probably caused when pieces that have broken off otoliths have slipped into one of the semicircular canals. In most cases, it is the posterior canal that is affected. In certain head positions, these particles shift and create a fluid wave which displaces the cupula of the canal affected, which leads to dizziness, vertigo and nystagmus.
This membrane is weighted with calcium carbonate-protein granules called otoliths. The otolithic membrane adds weight to the tops of the hair cells and increases their inertia. The addition in weight and inertia is vital to the utricle's ability to detect linear acceleration, as described below, and to determine the orientation of the head. [3]