Search results
Results from the WOW.Com Content Network
where b is the number base (10 for decimal), and p is a prime that does not divide b. (Primes p that give cyclic numbers in base b are called full reptend primes or long primes in base b). For example, the case b = 10, p = 7 gives the cyclic number 142857, and the case b = 12, p = 5 gives the cyclic number 2497.
A full reptend prime, full repetend prime, proper prime [7]: 166 or long prime in base b is an odd prime number p such that the Fermat quotient = (where p does not divide b) gives a cyclic number with p − 1 digits.
[1] [2] For example, 1193 is a circular prime, since 1931, 9311 and 3119 all are also prime. [3] A circular prime with at least two digits can only consist of combinations of the digits 1, 3, 7 or 9, because having 0, 2, 4, 6 or 8 as the last digit makes the number divisible by 2, and having 0 or 5 as the last digit makes it divisible by 5. [4]
The cyclic number corresponding to prime p will possess p − 1 digits if and only if p is a full reptend prime. That is, the multiplicative order ord p b = p − 1, which is equivalent to b being a primitive root modulo p. The term "long prime" was used by John Conway and Richard Guy in their Book of Numbers.
A cyclic number [1] [2] is a natural number n such that n and φ(n) are coprime. Here φ is Euler's totient function. An equivalent definition is that a number n is cyclic if and only if any group of order n is cyclic. [3] Any prime number is clearly cyclic. All cyclic numbers are square-free. [4] Let n = p 1 p 2 …
A number n is called a cyclic number if Z/nZ is the only group of order n, which is true exactly when gcd(n, φ(n)) = 1. [13] The sequence of cyclic numbers include all primes, but some are composite such as 15. However, all cyclic numbers are odd except 2. The cyclic numbers are:
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
Related to Goormaghtigh conjecture for the generalized repunit numbers (111 in base 90 = 1111111111111 in base 2). 95: Number of printable ASCII characters. [65] 96: Total number of character codes in the (six) ASCII sticks containing printable characters. 97: Smallest base which is not perfect odd power (where generalized Wagstaff numbers can ...