enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Persistence of a number - Wikipedia

    en.wikipedia.org/wiki/Persistence_of_a_number

    The additive persistence of 2718 is 2: first we find that 2 + 7 + 1 + 8 = 18, and then that 1 + 8 = 9. The multiplicative persistence of 39 is 3, because it takes three steps to reduce 39 to a single digit: 39 → 27 → 14 → 4. Also, 39 is the smallest number of multiplicative persistence 3.

  3. Zero-product property - Wikipedia

    en.wikipedia.org/wiki/Zero-product_property

    In algebra, the zero-product property states that the product of two nonzero elements is nonzero. In other words, =, = = This property is also known as the rule of zero product, the null factor law, the multiplication property of zero, the nonexistence of nontrivial zero divisors, or one of the two zero-factor properties. [1]

  4. Resolvent cubic - Wikipedia

    en.wikipedia.org/wiki/Resolvent_cubic

    The roots of this polynomial are 0 and the roots of the quadratic polynomial y 2 + 2a 2 y + a 2 2 − 4a 0. If a 2 2 − 4a 0 < 0, then the product of the two roots of this polynomial is smaller than 0 and therefore it has a root greater than 0 (which happens to be −a 2 + 2 √ a 0) and we can take α as the square

  5. Multiplicity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(mathematics)

    The graph crosses the x-axis at roots of odd multiplicity and does not cross it at roots of even multiplicity. A non-zero polynomial function is everywhere non-negative if and only if all its roots have even multiplicity and there exists an x 0 {\displaystyle x_{0}} such that f ( x 0 ) > 0 {\displaystyle f(x_{0})>0} .

  6. Puiseux series - Wikipedia

    en.wikipedia.org/wiki/Puiseux_series

    [8] [9] This existence of a formal parametrization of the branches of an algebraic curve or function is also referred to as Puiseux's theorem: it has arguably the same mathematical content as the fact that the field of Puiseux series is algebraically closed and is a historically more accurate description of the original author's statement. [10]

  7. p-adic valuation - Wikipedia

    en.wikipedia.org/wiki/P-adic_valuation

    where the product is taken over all primes p and the usual absolute value, denoted | |. This follows from simply taking the prime factorization : each prime power factor p k {\displaystyle p^{k}} contributes its reciprocal to its p -adic absolute value, and then the usual Archimedean absolute value cancels all of them.

  8. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial ...

  9. Bézout's theorem - Wikipedia

    en.wikipedia.org/wiki/Bézout's_theorem

    If one defines the multiplicity of a common zero of P and Q as the number of occurrences of the corresponding factor in the product, Bézout's theorem is thus proved. For proving that the intersection multiplicity that has just been defined equals the definition in terms of a deformation, it suffices to remark that the resultant and thus its ...