enow.com Web Search

  1. Ad

    related to: properties of altitudes in triangles pdf class 10

Search results

  1. Results from the WOW.Com Content Network
  2. Altitude (triangle) - Wikipedia

    en.wikipedia.org/wiki/Altitude_(triangle)

    For acute triangles, the feet of the altitudes all fall on the triangle's sides (not extended). In an obtuse triangle (one with an obtuse angle ), the foot of the altitude to the obtuse-angled vertex falls in the interior of the opposite side, but the feet of the altitudes to the acute-angled vertices fall on the opposite extended side ...

  3. Simson line - Wikipedia

    en.wikipedia.org/wiki/Simson_line

    The Simson line of a vertex of the triangle is the altitude of the triangle dropped from that vertex, and the Simson line of the point diametrically opposite to the vertex is the side of the triangle opposite to that vertex. If P and Q are points on the circumcircle, then the angle between the Simson lines of P and Q is half the angle of the ...

  4. Orthocenter - Wikipedia

    en.wikipedia.org/wiki/Orthocenter

    That is, the feet of the altitudes of an oblique triangle form the orthic triangle, DEF. Also, the incenter (the center of the inscribed circle) of the orthic triangle DEF is the orthocenter of the original triangle ABC. [22] Trilinear coordinates for the vertices of the orthic triangle are given by =: ⁡: ⁡ = ⁡:: ⁡ = ⁡: ⁡:

  5. Heronian triangle - Wikipedia

    en.wikipedia.org/wiki/Heronian_triangle

    In geometry, a Heronian triangle (or Heron triangle) is a triangle whose side lengths a, b, and c and area A are all positive integers. [ 1 ] [ 2 ] Heronian triangles are named after Heron of Alexandria , based on their relation to Heron's formula which Heron demonstrated with the example triangle of sides 13, 14, 15 and area 84 .

  6. Integer triangle - Wikipedia

    en.wikipedia.org/wiki/Integer_triangle

    The only triangle with consecutive integers for an altitude and the sides has sides (13, 14, 15) and altitude from side 14 equal to 12. The (2, 3, 4) triangle and its multiples are the only triangles with integer sides in arithmetic progression and having the complementary exterior angle property.

  7. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    The triangles in both spaces have properties different from the triangles in Euclidean space. For example, as mentioned above, the internal angles of a triangle in Euclidean space always add up to 180°. However, the sum of the internal angles of a hyperbolic triangle is less than 180°, and for any spherical triangle, the sum is more than 180 ...

  8. Area of a triangle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_triangle

    The area of a triangle can be demonstrated, for example by means of the congruence of triangles, as half of the area of a parallelogram that has the same base length and height. A graphic derivation of the formula T = h 2 b {\displaystyle T={\frac {h}{2}}b} that avoids the usual procedure of doubling the area of the triangle and then halving it.

  9. Modern triangle geometry - Wikipedia

    en.wikipedia.org/wiki/Modern_triangle_geometry

    In mathematics, modern triangle geometry, or new triangle geometry, is the body of knowledge relating to the properties of a triangle discovered and developed roughly since the beginning of the last quarter of the nineteenth century. Triangles and their properties were the subject of investigation since at least the time of Euclid.

  1. Ad

    related to: properties of altitudes in triangles pdf class 10