enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Logit - Wikipedia

    en.wikipedia.org/wiki/Logit

    If p is a probability, then p/(1 − p) is the corresponding odds; the logit of the probability is the logarithm of the odds, i.e.: ⁡ = ⁡ = ⁡ ⁡ = ⁡ = ⁡ (). The base of the logarithm function used is of little importance in the present article, as long as it is greater than 1, but the natural logarithm with base e is the one most often used.

  3. Logarithmic scale - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_scale

    A logarithmic unit is a unit that can be used to express a quantity (physical or mathematical) on a logarithmic scale, that is, as being proportional to the value of a logarithm function applied to the ratio of the quantity and a reference quantity of the same type. The choice of unit generally indicates the type of quantity and the base of the ...

  4. MATLAB - Wikipedia

    en.wikipedia.org/wiki/MATLAB

    MATLAB (an abbreviation of "MATrix LABoratory" [22]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks.MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages.

  5. Polylogarithmic function - Wikipedia

    en.wikipedia.org/wiki/Polylogarithmic_function

    All polylogarithmic functions of n are o(n ε) for every exponent ε > 0 (for the meaning of this symbol, see small o notation), that is, a polylogarithmic function grows more slowly than any positive exponent. This observation is the basis for the soft O notation Õ(n).

  6. Logistic function - Wikipedia

    en.wikipedia.org/wiki/Logistic_function

    The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.

  7. Logarithmic decrement - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_decrement

    The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.

  8. Log–log plot - Wikipedia

    en.wikipedia.org/wiki/Loglog_plot

    A loglog plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).

  9. Complex logarithm - Wikipedia

    en.wikipedia.org/wiki/Complex_logarithm

    Such complex logarithm functions are analogous to the real logarithm function: >, which is the inverse of the real exponential function and hence satisfies e ln x = x for all positive real numbers x. Complex logarithm functions can be constructed by explicit formulas involving real-valued functions, by integration of 1 / z {\displaystyle 1/z ...