Search results
Results from the WOW.Com Content Network
Electron capture is always an alternative decay mode for radioactive isotopes that do have sufficient energy to decay by positron emission. Electron capture is sometimes included as a type of beta decay, [1] because the basic nuclear process, mediated by the weak force, is the
The electron capture detector is used for detecting electron-absorbing components (high electronegativity) such as halogenated compounds in the output stream of a gas chromatograph. The ECD uses a radioactive beta particle (electron) emitter in conjunction with a so-called makeup gas flowing through the detector chamber.
Electron capture is sometimes included as a type of beta decay, [3] because the basic nuclear process, mediated by the weak force, is the same. In electron capture, an inner atomic electron is captured by a proton in the nucleus, transforming it into a neutron, and an electron neutrino is released.
Electron capture ionization is the ionization of a gas phase atom or molecule by attachment of an electron to create an ion of the form .The reaction is + where the M over the arrow denotes that to conserve energy and momentum a third body is required (the molecularity of the reaction is three).
Electron capture for almost all non-noble gas atoms involves the release of energy [4] and thus is exothermic. The positive values that are listed in tables of E ea are amounts or magnitudes. It is the word "released" within the definition "energy released" that supplies the negative sign to ΔE.
An electron can be emitted into the conduction band from a trap level. A hole in the valence band can be captured by a trap. This is analogous to a filled trap releasing an electron into the valence band. A captured hole can be released into the valence band. Analogous to the capture of an electron from the valence band.
In electron capture, some proton-rich nuclides were found to capture their own atomic electrons instead of emitting positrons, and subsequently, these nuclides emit only a neutrino and a gamma ray from the excited nucleus (and often also Auger electrons and characteristic X-rays, as a result of the re-ordering of electrons to fill the place of ...
Radioactive decay is the process of emission of particles and energy from the unstable nucleus of an atom to form a stable product. This is done via the tunnelling of a particle out of the nucleus (an electron tunneling into the nucleus is electron capture). This was the first application of quantum tunnelling.