Search results
Results from the WOW.Com Content Network
In aerodynamics, the lift-to-drag ratio (or L/D ratio) is the lift generated by an aerodynamic body such as an aerofoil or aircraft, divided by the aerodynamic drag caused by moving through air. It describes the aerodynamic efficiency under given flight conditions. The L/D ratio for any given body will vary according to these flight conditions.
The term drag area derives from aerodynamics, where it is the product of some reference area (such as cross-sectional area, total surface area, or similar) and the drag coefficient. In 2003, Car and Driver magazine adopted this metric as a more intuitive way to compare the aerodynamic efficiency of various automobiles.
During wind tunnel testing at Imperial College, Frank Dernie recorded that the FW08 had a lift to drag ratio of a remarkable 8:1 - eight parts downforce to just one part drag, giving the FW08 supreme aerodynamic efficiency and giving Keke Rosberg a chance to compete with the far more powerful turbo Renault and Ferrari during the 1982 season ...
Automotive aerodynamics differs from aircraft aerodynamics in several ways: The characteristic shape of a road vehicle is much less streamlined compared to an aircraft. The vehicle operates very close to the ground, rather than in free air. The operating speeds are lower (and aerodynamic drag varies as the square of speed).
A wing of infinite span and uniform airfoil segment (or a 2D wing) would experience no induced drag. [11] The drag characteristics of a wing with infinite span can be simulated using an airfoil segment the width of a wind tunnel. [12] An increase in wingspan or a solution with a similar effect is one way to reduce induced drag.
By proper shaping of the car's underside, the air speed there could be increased, lowering the pressure and pulling the car down onto the track. His test vehicles had a Venturi-like channel beneath the cars sealed by flexible side skirts that separated the channel from above-car aerodynamics. He investigated how flow separation on the ...
Spoilers are added to cars primarily for styling and either have little aerodynamic benefit or worsen the aerodynamics. The term "spoiler" is often mistakenly used interchangeably with "wing". An automotive wing is a device designed to generate downforce as air passes around it, not simply disrupt existing airflow patterns.
Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing has a low aspect ratio. [ 1 ] Aspect ratio and other features of the planform are often used to predict the aerodynamic efficiency of a wing because the lift-to-drag ratio increases with aspect ratio, improving the fuel economy in powered airplanes and the gliding ...