Search results
Results from the WOW.Com Content Network
Overview of the citric acid cycle. The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle (tricarboxylic acid cycle) [1] [2] —is a series of biochemical reactions to release the energy stored in nutrients through the oxidation of acetyl-CoA derived from carbohydrates, fats, proteins, and alcohol.
Common name IUPAC name Molecular formula Structural formula citric acid: 2-hydroxypropane-1,2,3-tricarboxylic acid: C 6 H 8 O 7: isocitric acid: 1-hydroxypropane-1,2,3-tricarboxylic acid
[5]: 572 To the right is an illustration of the amphibolic properties of the TCA cycle. The glyoxylate shunt pathway is an alternative to the tricarboxylic acid (TCA) cycle, for it redirects the pathway of TCA to prevent full oxidation of carbon compounds, and to preserve high energy carbon sources as future energy sources. This pathway occurs ...
Fatty acid degradation is the process in which fatty acids are broken down into their metabolites, in the end generating acetyl-CoA, the entry molecule for the citric acid cycle, the main energy supply of living organisms, including bacteria and animals. [1] [2] It includes three major steps: Lipolysis of and release from adipose tissue
The TCA cycle is a hub of metabolism, with central importance in both energy production and biosynthesis. Therefore, it is crucial for the cell to regulate concentrations of TCA cycle metabolites in the mitochondria. Anaplerotic flux must balance cataplerotic flux in order to retain homeostasis of cellular metabolism. [1]
The Reductive/Reverse TCA Cycle (rTCA cycle). Shown are all of the reactants, intermediates and products for this cycle. The reverse Krebs cycle (also known as the reverse tricarboxylic acid cycle, the reverse TCA cycle, or the reverse citric acid cycle, or the reductive tricarboxylic acid cycle, or the reductive TCA cycle) is a sequence of chemical reactions that are used by some bacteria and ...
Due to the truncation of the citric acid cycle the amount of acetyl-CoA infiltrated in the citric acid cycle is low and acetyl-CoA is available for de novo synthesis of fatty acids and cholesterol. The fatty acids can be used for phospholipid synthesis or can be released. [15] Fatty acids represent an effective storage vehicle for hydrogen.
This acetyl-CoA then enters the mitochondrial tricarboxylic acid cycle (TCA cycle). Both the fatty acid beta-oxidation and the TCA cycle produce NADH and FADH 2, which are used by the electron transport chain to generate ATP. Fatty acids are oxidized by most of the tissues in the body.