enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mitochondrion - Wikipedia

    en.wikipedia.org/wiki/Mitochondrion

    Mitochondria divide by mitochondrial fission, a form of binary fission that is also done by bacteria [165] although the process is tightly regulated by the host eukaryotic cell and involves communication between and contact with several other organelles. The regulation of this division differs between eukaryotes.

  3. Chemiosmosis - Wikipedia

    en.wikipedia.org/wiki/Chemiosmosis

    Non-photosynthetic bacteria such as E. coli also contain ATP synthase. In fact, mitochondria and chloroplasts are the product of endosymbiosis and trace back to incorporated prokaryotes. This process is described in the endosymbiotic theory. The origin of the mitochondrion triggered the origin of eukaryotes, and the origin of the plastid the ...

  4. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    In the bacteria, oxidative phosphorylation in Escherichia coli is understood in most detail, while archaeal systems are at present poorly understood. [58] The main difference between eukaryotic and prokaryotic oxidative phosphorylation is that bacteria and archaea use many different substances to donate or accept electrons.

  5. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    Cellular respiration is a vital process that occurs in the cells of all [[plants and some bacteria ]]. [2] [better source needed] Respiration can be either aerobic, requiring oxygen, or anaerobic; some organisms can switch between aerobic and anaerobic respiration. [3] [better source needed]

  6. Electron transport chain - Wikipedia

    en.wikipedia.org/wiki/Electron_transport_chain

    Bacteria can use several different electron donors. When organic matter is the electron source, the donor may be NADH or succinate, in which case electrons enter the electron transport chain via NADH dehydrogenase (similar to Complex I in mitochondria) or succinate dehydrogenase (similar to Complex II ).

  7. ATP synthase - Wikipedia

    en.wikipedia.org/wiki/ATP_synthase

    The overall process of creating energy in this fashion is termed oxidative phosphorylation. The same process takes place in the mitochondria, where ATP synthase is located in the inner mitochondrial membrane and the F 1-part projects into the mitochondrial matrix. By pumping proton cations into the matrix, the ATP-synthase converts ADP into ATP.

  8. Metabolic pathway - Wikipedia

    en.wikipedia.org/wiki/Metabolic_pathway

    The degradative process of a catabolic pathway provides the energy required to conduct the biosynthesis of an anabolic pathway. [6] In addition to the two distinct metabolic pathways is the amphibolic pathway, which can be either catabolic or anabolic based on the need for or the availability of energy.

  9. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    Glycolysis is the metabolic pathway that converts glucose (C 6 H 12 O 6) into pyruvate and, in most organisms, occurs in the liquid part of cells (the cytosol). The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH). [1]