Search results
Results from the WOW.Com Content Network
If A is a set, then the absolute complement of A (or simply the complement of A) is the set of elements not in A (within a larger set that is implicitly defined). In other words, let U be a set that contains all the elements under study; if there is no need to mention U, either because it has been previously specified, or it is obvious and unique, then the absolute complement of A is the ...
A Venn diagram, also called a set diagram or logic diagram, shows all possible logical relations between a finite collection of different sets. These diagrams depict elements as points in the plane, and sets as regions inside closed curves. A Venn diagram consists of multiple overlapping closed curves, usually circles, each representing a set.
The complement of a set A is then given by that portion of the rectangle outside of A's circle. Strictly speaking, this is the relative complement U \ A of A relative to U; but in a context where U is the universe, it can be regarded as the absolute complement A C of A. Similarly, there is a notion of the nullary intersection, that is the ...
The three Venn diagrams in the figure below represent respectively conjunction x ∧ y, disjunction x ∨ y, and complement ¬x. Figure 2. Venn diagrams for conjunction, disjunction, and complement. For conjunction, the region inside both circles is shaded to indicate that x ∧ y is 1 when both variables are 1.
For example, Cantor's verbatim definition allows for considerable freedom in what constitutes a set. On the other hand, it is unlikely that Cantor was particularly interested in sets containing cats and dogs, but rather only in sets containing purely mathematical objects. An example of such a class of sets could be the von Neumann universe. But ...
For example, {1, 2} is a subset of {1, 2, 3}, and so is {2} but {1, 4} is not. As implied by this definition, a set is a subset of itself. As implied by this definition, a set is a subset of itself. For cases where this possibility is unsuitable or would make sense to be rejected, the term proper subset is defined.
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...