Search results
Results from the WOW.Com Content Network
Top: The action of M, indicated by its effect on the unit disc D and the two canonical unit vectors e 1 and e 2. Left: The action of V ⁎, a rotation, on D, e 1, and e 2. Bottom: The action of Σ, a scaling by the singular values σ 1 horizontally and σ 2 vertically.
The SVD decomposes M into three simple transformations: a rotation V *, a scaling Σ along the rotated coordinate axes and a second rotation U. Σ is a (square, in this example) diagonal matrix containing in its diagonal the singular values of M, which represent the lengths σ 1 and σ 2 of the semi-axes of the ellipse.
In linear algebra, two-dimensional singular-value decomposition (2DSVD) computes the low-rank approximation of a set of matrices such as 2D images or weather maps in a manner almost identical to SVD (singular-value decomposition) which computes the low-rank approximation of a single matrix (or a set of 1D vectors).
In linear algebra, the generalized singular value decomposition (GSVD) is the name of two different techniques based on the singular value decomposition (SVD).The two versions differ because one version decomposes two matrices (somewhat like the higher-order or tensor SVD) and the other version uses a set of constraints imposed on the left and right singular vectors of a single-matrix SVD.
Some aspects can be traced as far back as F. L. Hitchcock in 1928, [1] but it was L. R. Tucker who developed for third-order tensors the general Tucker decomposition in the 1960s, [2] [3] [4] further advocated by L. De Lathauwer et al. [5] in their Multilinear SVD work that employs the power method, or advocated by Vasilescu and Terzopoulos ...
In applied mathematics, k-SVD is a dictionary learning algorithm for creating a dictionary for sparse representations, via a singular value decomposition approach. k-SVD is a generalization of the k-means clustering method, and it works by iteratively alternating between sparse coding the input data based on the current dictionary, and updating the atoms in the dictionary to better fit the data.
Tensor-CURT decomposition [6] is a generalization of matrix-CUR decomposition. Formally, a CURT tensor approximation of a tensor A is three matrices and a (core-)tensor C, R, T and U such that C is made from columns of A, R is made from rows of A, T is made from tubes of A and that the product U(C,R,T) (where the ,,-th entry of it is ′, ′, ′ ′, ′, ′, ′, ′, ′) closely ...
This kind of block diagram that SVD reveals for an operator is what we ought to be showing, if we want to give people a really intuitive feel for SVD -- a diagram in 20 dimensions, not 2 dimensions. SVD is most importantly a tool for making sense of high-dimensional systems and linear operators. Jheald 11:47, 4 February 2011 (UTC)