enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Genetic drift - Wikipedia

    en.wikipedia.org/wiki/Genetic_drift

    Genetic drift, also known as random genetic drift, allelic drift or the Wright effect, [1] is the change in the frequency of an existing gene variant in a population due to random chance. [2] Genetic drift may cause gene variants to disappear completely and thereby reduce genetic variation. [3]

  3. Punnett square - Wikipedia

    en.wikipedia.org/wiki/Punnett_square

    Since dominant traits mask recessive traits (assuming no epistasis), there are nine combinations that have the phenotype round yellow, three that are round green, three that are wrinkled yellow, and one that is wrinkled green. The ratio 9:3:3:1 is the expected outcome when crossing two double-heterozygous parents with unlinked genes.

  4. Test cross - Wikipedia

    en.wikipedia.org/wiki/Test_cross

    In a test cross, the individual in question is bred with another individual that is homozygous for the recessive trait and the offspring of the test cross are examined. [2] Since the homozygous recessive individual can only pass on recessive alleles, the allele the individual in question passes on determines the phenotype of the offspring. [3]

  5. Gene flow - Wikipedia

    en.wikipedia.org/wiki/Gene_flow

    In population genetics, gene flow (also known as migration and allele flow) is the transfer of genetic material from one population to another. If the rate of gene flow is high enough, then two populations will have equivalent allele frequencies and therefore can be considered a single effective population.

  6. Hereditary carrier - Wikipedia

    en.wikipedia.org/wiki/Hereditary_carrier

    A hereditary carrier (genetic carrier or just carrier), is a person or other organism that has inherited a recessive allele for a genetic trait or mutation but usually does not display that trait or show symptoms of the disease. Carriers are, however, able to pass the allele onto their offspring, who may then express the genetic trait.

  7. Heredity - Wikipedia

    en.wikipedia.org/wiki/Heredity

    The allele for yellow pods is recessive. The effects of this allele are only seen when it is present in both chromosomes, gg (homozygote). This derives from Zygosity , the degree to which both copies of a chromosome or gene have the same genetic sequence, in other words, the degree of similarity of the alleles in an organism.

  8. Introduction to genetics - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_genetics

    In this example, the allele for brown can be called "B" and the allele for red "b". (It is normal to write dominant alleles with capital letters and recessive ones with lower-case letters.) The brown hair daughter has the "brown hair phenotype" but her genotype is Bb, with one copy of the B allele, and one of the b allele.

  9. Allele frequency spectrum - Wikipedia

    en.wikipedia.org/wiki/Allele_frequency_spectrum

    The allele frequency spectrum can be written as the vector = (,,,,), where is the number of observed sites with derived allele frequency .In this example, the observed allele frequency spectrum is (,,,,), due to four instances of a single observed derived allele at a particular SNP loci, two instances of two derived alleles, and so on.