enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Laplace's equation - Wikipedia

    en.wikipedia.org/wiki/Laplace's_equation

    In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.

  3. Paraboloidal coordinates - Wikipedia

    en.wikipedia.org/wiki/Paraboloidal_coordinates

    Paraboloidal coordinates can be useful for solving certain partial differential equations. For instance, the Laplace equation and Helmholtz equation are both separable in paraboloidal coordinates. Hence, the coordinates can be used to solve these equations in geometries with paraboloidal symmetry, i.e. with boundary conditions specified on ...

  4. Relaxation (iterative method) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(iterative_method)

    Relaxation methods are used to solve the linear equations resulting from a discretization of the differential equation, for example by finite differences. [ 2 ] [ 3 ] [ 4 ] Iterative relaxation of solutions is commonly dubbed smoothing because with certain equations, such as Laplace's equation , it resembles repeated application of a local ...

  5. Cylindrical harmonics - Wikipedia

    en.wikipedia.org/wiki/Cylindrical_harmonics

    The cylindrical harmonics for (k,n) are now the product of these solutions and the general solution to Laplace's equation is given by a linear combination of these solutions: (,,) = | | (,) (,) where the () are constants with respect to the cylindrical coordinates and the limits of the summation and integration are determined by the boundary ...

  6. Log-polar coordinates - Wikipedia

    en.wikipedia.org/wiki/Log-polar_coordinates

    When one wants to solve the Dirichlet problem in a domain with rotational symmetry, the usual thing to do is to use the method of separation of variables for partial differential equations for Laplace's equation in polar form. This means that you write (,) = (). Laplace's equation is then separated into two ordinary differential equations

  7. Solid harmonics - Wikipedia

    en.wikipedia.org/wiki/Solid_harmonics

    Introducing r, θ, and φ for the spherical polar coordinates of the 3-vector r, and assuming that is a (smooth) function , we can write the Laplace equation in the following form = (^) =,, where L 2 is the square of the nondimensional angular momentum operator, ^ = ().

  8. Walk-on-spheres method - Wikipedia

    en.wikipedia.org/wiki/Walk-on-spheres_method

    The WoS method can be modified to solve more general problems. In particular, the method has been generalized to solve Dirichlet problems for equations of the form = + [6] (which include the Poisson and linearized Poisson−Boltzmann equations) or for any elliptic partial differential equation with constant coefficients.

  9. Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Laplace_operator

    Solutions of the Laplace equation, i.e. functions whose Laplacian is identically zero, thus represent possible equilibrium densities under diffusion. The Laplace operator itself has a physical interpretation for non-equilibrium diffusion as the extent to which a point represents a source or sink of chemical concentration, in a sense made ...