Search results
Results from the WOW.Com Content Network
In mathematics, the binary logarithm (log 2 n) is the power to which the number 2 must be raised to obtain the value n.That is, for any real number x, = =. For example, the binary logarithm of 1 is 0, the binary logarithm of 2 is 1, the binary logarithm of 4 is 2, and the binary logarithm of 32 is 5.
For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d. Derivations also use the log definitions x = b log b (x ...
The graph of the logarithm base 2 crosses the x-axis at x = 1 and passes through the points (2, 1), (4, 2), and (8, 3), depicting, e.g., log 2 (8) = 3 and 2 3 = 8. The graph gets arbitrarily close to the y-axis, but does not meet it. Addition, multiplication, and exponentiation are three of the most fundamental arithmetic operations.
The log base 2 can be used to anticipate whether a multiplication will overflow, since ⌈log 2 (xy)⌉ ≤ ⌈log 2 (x)⌉ + ⌈log 2 (y)⌉. [53] Count leading zeros and count trailing zeros can be used together to implement Gosper's loop-detection algorithm, [54] which can find the period of a function of finite range using limited resources ...
For example, log 10 10000 = 4, and log 10 0.001 = −3. These are instances of the discrete logarithm problem. Other base-10 logarithms in the real numbers are not instances of the discrete logarithm problem, because they involve non-integer exponents. For example, the equation log 10 53 = 1.724276… means that 10 1.724276… = 53.
Logarithmic number systems have been independently invented and published at least three times as an alternative to fixed-point and floating-point number systems. [1]Nicholas Kingsbury and Peter Rayner introduced "logarithmic arithmetic" for digital signal processing (DSP) in 1971.
The different units of information (bits for the binary logarithm log 2, nats for the natural logarithm ln, bans for the decimal logarithm log 10 and so on) are constant multiples of each other. For instance, in case of a fair coin toss, heads provides log 2 (2) = 1 bit of information, which is approximately 0.693 nats or 0.301 decimal digits.
It may also refer to the binary (base 2) logarithm in the context of computer science, particularly in the context of time complexity. Generally, the notation for the logarithm to base b of a number x is shown as log b x. So the log of 8 to the base 2 would be log 2 8 = 3.