Search results
Results from the WOW.Com Content Network
Reversing flow patterns in arteries and/or veins can also have the same effect, although it is unclear whether this is due to differences in physical or chemical properties of venous vs. arterial flow (i.e. pressure profile and oxygen tension). [10] Another example of the fluidity of arterial-venous identity is that of the intersomitic vessel.
Twin anemia-polycythemia sequence (TAPS) is a chronic type of unbalanced fetal transfusion in monochorionic twins that results in polycythemia in the TAPS recipient and anemia in the TAPS donor due to tiny placental anastomoses. [1]
The unpaired umbilical vein carries oxygen and nutrient rich blood derived from fetal-maternal blood exchange at the chorionic villi.More than two-thirds of fetal hepatic circulation is via the main portal vein, while the remainder is shunted from the left portal vein via the ductus venosus to the inferior vena cava, eventually being delivered to the fetal right atrium.
As the umbilical vessels are obliterated and the infant starts breathing at birth, the source of oxygen changes from the placenta to the lungs. This major trigger will facilitate the transformation from fetal to postnatal circulation in many ways. First, the ductus venosus was previously kept open by the blood flow from the umbilical vein.
The umbilical arteries are one of two arteries in the human body, that carry deoxygenated blood, the other being the pulmonary arteries. The pressure inside the umbilical artery is approximately 50 mmHg. [4] Resistance to blood flow decreases during development as the artery grows wider. [5]
In response to this, the proportion of umbilical venous blood diverted to fetal heart increases. [25] This eventually leads to elevation of pulmonary vascular resistance and increased right ventricular afterload. [26] [27] [28] This fetal cerebral redistribution of blood flow is an early
The pathway of fetal umbilical venous flow is umbilical vein left portal vein ductus venosus inferior vena cava eventually right atrium.. This anatomic course is important to recall when assessing the success of neonatal umbilical venous catheterization, as failure to cannulate through the ductus venosus results in malpositioned hepatic catheterization via the left or right portal veins.
It is a dimensionless expression of the pulsatile flow frequency in relation to viscous effects. It is named after John R. Womersley (1907–1958) for his work with blood flow in arteries. [1] The Womersley number is important in keeping dynamic similarity when scaling an experiment. An example of this is scaling up the vascular system for ...