Search results
Results from the WOW.Com Content Network
In computing, a roundoff error, [1] also called rounding error, [2] is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. [3]
A = round (rand (3, 4, 5) * 10) % 3x4x5 three-dimensional or cubic array > A (:,:, 3) % 3x4 two-dimensional array along first and second dimensions ans = 8 3 5 7 8 9 1 4 4 4 2 5 > A (:, 2: 3, 3) % 3x2 two-dimensional array along first and second dimensions ans = 3 5 9 1 4 2 > A (2: end,:, 3) % 2x4 two-dimensional array using the 'end' keyword ...
One method, more obscure than most, is to alternate direction when rounding a number with 0.5 fractional part. All others are rounded to the closest integer. Whenever the fractional part is 0.5, alternate rounding up or down: for the first occurrence of a 0.5 fractional part, round up, for the second occurrence, round down, and so on.
Apple's Swift once supported these operators, but they have been depreciated since version 2.2 [13] and removed as of version 3.0. [14] [15] Pascal, Delphi, Modula-2, and Oberon uses functions (inc(x) and dec(x)) instead of operators. Notably Python and Rust do not support these operators.
is how one would use Fortran to create arrays from the even and odd entries of an array. Another common use of vectorized indices is a filtering operation. Consider a clipping operation of a sine wave where amplitudes larger than 0.5 are to be set to 0.5. Using S-Lang, this can be done by y = sin(x); y[where(abs(y)>0.5)] = 0.5;
For tie-breaking, Python 3 uses round to even: round(1.5) and round(2.5) both produce 2. [124] Versions before 3 used round-away-from-zero: round(0.5) is 1.0, round(-0.5) is −1.0. [125] Python allows Boolean expressions with multiple equality relations in a manner that is consistent with general use in mathematics.
Off-by-one errors are common in using the C library because it is not consistent with respect to whether one needs to subtract 1 byte – functions like fgets() and strncpy will never write past the length given them (fgets() subtracts 1 itself, and only retrieves (length − 1) bytes), whereas others, like strncat will write past the length given them.
Here we start with 0 in single precision (binary32) and repeatedly add 1 until the operation does not change the value. Since the significand for a single-precision number contains 24 bits, the first integer that is not exactly representable is 2 24 +1, and this value rounds to 2 24 in round to nearest, ties to even.