Search results
Results from the WOW.Com Content Network
A complete bipartite graph with m = 5 and n = 3 The Heawood graph is bipartite.. In the mathematical field of graph theory, a bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint and independent sets and , that is, every edge connects a vertex in to one in .
A complete bipartite graph K m,n has a maximum matching of size min{m,n}. A complete bipartite graph K n,n has a proper n-edge-coloring corresponding to a Latin square. [14] Every complete bipartite graph is a modular graph: every triple of vertices has a median that belongs to shortest paths between each pair of vertices. [15]
A stronger definition of bipartiteness is: a hypergraph is called bipartite if its vertex set V can be partitioned into two sets, X and Y, such that each hyperedge contains exactly one element of X. [2] [3] Every bipartite graph is also a bipartite hypergraph. Every bipartite hypergraph is 2-colorable, but bipartiteness is stronger than 2 ...
Every tree is a bipartite graph. A graph is bipartite if and only if it contains no cycles of odd length. Since a tree contains no cycles at all, it is bipartite. Every tree with only countably many vertices is a planar graph. Every connected graph G admits a spanning tree, which is a tree that contains every vertex of G and whose edges are ...
In graph theory, a split of an undirected graph is a cut whose cut-set forms a complete bipartite graph.A graph is prime if it has no splits. The splits of a graph can be collected into a tree-like structure called the split decomposition or join decomposition, which can be constructed in linear time.
The bipartite dimension of the n-vertex complete graph, is ⌈ ⌉.. The bipartite dimension of a 2n-vertex crown graph equals (), where = {(⌊ / ⌋)}is the inverse function of the central binomial coefficient (de Caen, Gregory & Pullman 1981).
An example of a bipartite graph, with a maximum matching (blue) and minimum vertex cover (red) both of size six. In the mathematical area of graph theory, Kőnig's theorem, proved by Dénes Kőnig (), describes an equivalence between the maximum matching problem and the minimum vertex cover problem in bipartite graphs.
The smallest 1-crossing cubic graph is the complete bipartite graph K 3,3, with 6 vertices. The smallest 2-crossing cubic graph is the Petersen graph, with 10 vertices. The smallest 3-crossing cubic graph is the Heawood graph, with 14 vertices. The smallest 4-crossing cubic graph is the Möbius-Kantor graph, with 16 vertices.