Search results
Results from the WOW.Com Content Network
Thus, a point defining true stress–strain curve is displaced upwards and to the left to define the equivalent engineering stress–strain curve. The difference between the true and engineering stresses and strains will increase with plastic deformation. At low strains (such as elastic deformation), the differences between the two is ...
The elastic behavior of objects that undergo finite deformations has been described using a number of models, such as Cauchy elastic material models, Hypoelastic material models, and Hyperelastic material models. The deformation gradient (F) is the primary deformation measure used in finite strain theory.
Expressed in terms of components with respect to a rectangular Cartesian coordinate system, the governing equations of linear elasticity are: [1]. Equation of motion: , + = where the (), subscript is a shorthand for () / and indicates /, = is the Cauchy stress tensor, is the body force density, is the mass density, and is the displacement.
Young's modulus is defined as the ratio of the stress (force per unit area) applied to the object and the resulting axial strain (displacement or deformation) in the linear elastic region of the material. Although Young's modulus is named after the 19th-century British scientist Thomas Young, the concept was developed in 1727 by Leonhard Euler.
The elastic modulus of an object is defined as the slope of its stress–strain curve in the elastic deformation region: [1] A stiffer material will have a higher elastic modulus. An elastic modulus has the form:
Elastic energy is the mechanical potential energy stored in the configuration of a material or physical system as it is subjected to elastic deformation by work performed upon it. Elastic energy occurs when objects are impermanently compressed, stretched or generally deformed in any manner.
The first stage is the linear elastic region. The stress is proportional to the strain, that is, obeys the general Hooke's law, and the slope is Young's modulus. In this region, the material undergoes only elastic deformation. The end of the stage is the initiation point of plastic deformation.
Contact of an elastic sphere with an elastic half-space. An elastic sphere of radius indents an elastic half-space where total deformation is , causing a contact area of radius = The applied force is related to the displacement by [4]