enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    The first equation shows that, after one second, an object will have fallen a distance of 1/2 × 9.8 × 1 2 = 4.9 m. After two seconds it will have fallen 1/2 × 9.8 × 2 2 = 19.6 m; and so on. On the other hand, the penultimate equation becomes grossly inaccurate at great distances.

  3. Shell theorem - Wikipedia

    en.wikipedia.org/wiki/Shell_theorem

    The mass of any of the discs is the mass of the sphere multiplied by the ratio of the volume of an infinitely thin disc divided by the volume of a sphere (with constant radius ). The volume of an infinitely thin disc is π R 2 d x {\displaystyle \pi R^{2}\,dx} , or π ( a 2 − x 2 ) d x {\textstyle \pi \left(a^{2}-x^{2}\right)dx} .

  4. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    The portion of the mass that is located at radii r < r 0 causes the same force at the radius r 0 as if all of the mass enclosed within a sphere of radius r 0 was concentrated at the center of the mass distribution (as noted above). The portion of the mass that is located at radii r > r 0 exerts no net gravitational force at the radius r 0 from

  5. Schwarzschild radius - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_radius

    The Schwarzschild radius equation can be manipulated to yield an expression that gives the largest possible radius from an input density that doesn't form a black hole. Taking the input density as ρ, =. For example, the density of water is 1000 kg/m 3.

  6. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The gravity depends only on the mass inside the sphere of radius r. All the contributions from outside cancel out as a consequence of the inverse-square law of gravitation. Another consequence is that the gravity is the same as if all the mass were concentrated at the center. Thus, the gravitational acceleration at this radius is [14]

  7. Hill sphere - Wikipedia

    en.wikipedia.org/wiki/Hill_sphere

    For such two- or restricted three-body problems as its simplest examples—e.g., one more massive primary astrophysical body, mass of m1, and a less massive secondary body, mass of m2—the concept of a Hill radius or sphere is of the approximate limit to the secondary mass's "gravitational dominance", [6] a limit defined by "the extent" of its ...

  8. List of equations in gravitation - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.

  9. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    The larger mass is also moving on an elliptical orbit, but it is too small to be seen because M is much greater than m. The ends of the diameter indicate the apsides, the points of closest and farthest distance. The Kepler problem derives its name from Johannes Kepler, who worked as an assistant to the Danish astronomer Tycho Brahe. Brahe took ...