Search results
Results from the WOW.Com Content Network
𝟘 𝟙 𝟚 𝟛 𝟜 𝟝 𝟞 𝟟 U+1D7Ex 𝟠 𝟡 𝟢 𝟣 𝟤 𝟥 𝟦 𝟧 𝟨 𝟩 𝟪 𝟫 𝟬 𝟭 𝟮 𝟯 U+1D7Fx 𝟰 𝟱 𝟲 𝟳 𝟴 𝟵 𝟶 𝟷 𝟸 𝟹 𝟺 𝟻 𝟼 𝟽 𝟾 𝟿 Notes 1. ^ As of Unicode version 16.0 2. ^ Grey areas indicate non-assigned code points
Gray's patent introduces the term "reflected binary code" In principle, there can be more than one such code for a given word length, but the term Gray code was first applied to a particular binary code for non-negative integers, the binary-reflected Gray code, or BRGC.
Hexadecimal (also known as base-16 or simply hex) is a positional numeral system that represents numbers using a radix (base) of sixteen. Unlike the decimal system representing numbers using ten symbols, hexadecimal uses sixteen distinct symbols, most often the symbols "0"–"9" to represent values 0 to 9 and "A"–"F" to represent values from ten to fifteen.
A Unicode character is assigned a unique Name (na). [1] The name is composed of uppercase letters A–Z, digits 0–9, hyphen-minus and space.Some sequences are excluded: names beginning with a space or hyphen, names ending with a space or hyphen, repeated spaces or hyphens, and space after hyphen are not allowed.
This change was made because using markup does not give a good graphic approximation of fractions (compare markup 3 / 4 with super/sub-script ³/₄). The change also makes the superscript letters useful for ordinal indicators, more closely matching the ª and º characters. However, it makes them incorrect for normal superscript and subscript ...
Zero-based numbering is a way of numbering in which the initial element of a sequence is assigned the index 0, rather than the index 1 as is typical in everyday non-mathematical or non-programming circumstances.
Signed zero is zero with an associated sign.In ordinary arithmetic, the number 0 does not have a sign, so that −0, +0 and 0 are equivalent. However, in computing, some number representations allow for the existence of two zeros, often denoted by −0 (negative zero) and +0 (positive zero), regarded as equal by the numerical comparison operations but with possible different behaviors in ...
0101 (decimal 5) OR 0011 (decimal 3) = 0111 (decimal 7) The bitwise OR may be used to set to 1 the selected bits of the register described above. For example, the fourth bit of 0010 (decimal 2) may be set by performing a bitwise OR with the pattern with only the fourth bit set: 0010 (decimal 2) OR 1000 (decimal 8) = 1010 (decimal 10)